

Leveraging Mixture of Experts for Improved Speech Deepfake Detection

Viola Negroni - *PhD Student*

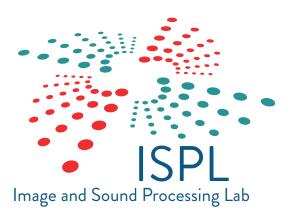
Image and Sound Processing Lab – ISPL
Department of Electronics, Information e Bioengineering

Image and Sound Processing Lab - Forensics Division

STEFANO TUBARO Full Professor

PAOLO BESTAGINI Associate Professor

SARA MANDELLI Assistant Professor Image/Video Forensics



DANIELE UGO LEONZIO Post-Doc Researcher Geophysics

VIOLA NEGRONI PhD Student Audio Forensics

GIOVANNI AFFATATO PhD Student Image/Video Forensics

WENDY WANG Research Assistant *Geophysics*

JUAN CAMILO ALBARRACIN Research Assistant *Geophysics*

Audio "Team"

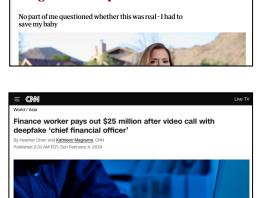
VIOLA NEGRONI PhD Student

- Curiosity-driven, this got me quite an unusual background
- Now almost at the end of my **2nd year** as a **PhD student**
- Specialized in audio forensics, focus on Speech Deepfake Detection
- 10 papers published, 3 under review
 - Analyzing the Impact of Splicing Artifacts in Partially Fake Speech Signals,
 ASVspoof Workshop, 2024
 - Source Verification for Speech Deepfakes, Interspeech, 2025

Presentation Outline

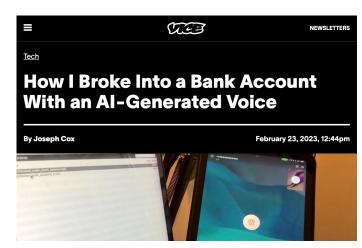
- 1. Motivations
- 2. Background on MoEs
- 3. «Leveraging Mixture of Experts for Improved Speech Deepfake Detection »
 - a. Rationale
 - b. Proposed Systems
 - c. Evaluation Setup
 - d. Experimental Results
- 4. « Attention-based Mixture of Experts for Robust Speech Deepfake Detection »
 - a. Context: SAFE Challenge 2025
 - b. Paradigm Shift: MELE vs MILE
 - c. Evaluation Setup
 - d. Experimental Results
- 5. Outcomes and Limitations
- 6. Future directions on MoEs

- TTS and VC tools are getting better and easier to use
- 🕏 Fraud, scams and other crimes that rely on generated audio have skyrocketed
- **1** Fake speech detectors work on academic datasets but **underperform in the wild**



Experience: scammers used AI to fake my

daughter's kidnap

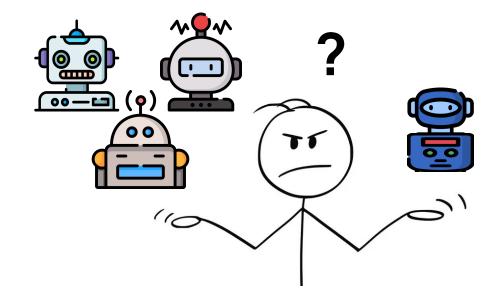


1 Fake speech detectors work on academic datasets but **underperform in the wild**

Why?

The Generalization Problem

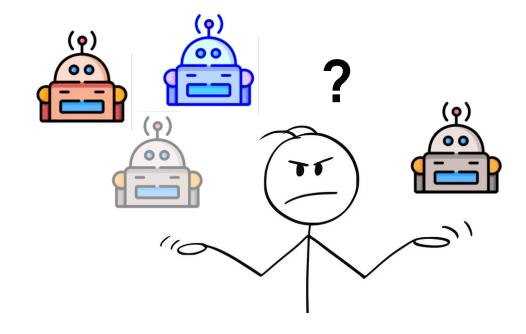
- Existing speech deepfake detectors lack generalization capabilities on unknown data
 - a. Unseen synthetic speech generators
 - b. Out of domain genuine data
- With the increasing frequency of new generative models releases, it is essential for detectors to adapt efficiently



★ Let's not forget about *shortcut learning*!

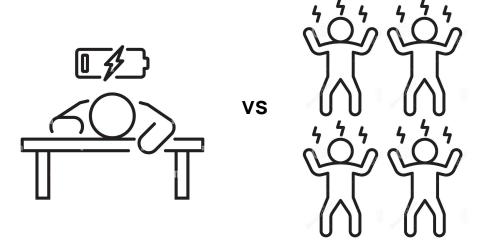
The Robustness Problem

- Existing speech deepfake detectors lack robustness in mismatched conditions
 - a. Post-processed data
 - b. Degraded data
- With the increasing spread of synthetic content online, it is essential for detectors to adapt efficiently



Robustness ≠ Generalization!

- Practical and conceptual **limitations** of current solutions.
 - o Fine tuning leads to catastrophic forgetting.
 - o **Re-training** and **joint-training** are not scalable.
- To tackle this, we can leverage Mixture of Experts frameworks!



Useful relevant literature

Adaptive Mixtures of Local Experts

R. A. Jacobs, M. I. Jordan, S. J. Nowla, G. E. Hinton Neural Computation (1991)

Mixture of Experts: A Literature Survey

S. Masoudnia, R. Ebrahimpour Artificial Intelligence Review (2014)

Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, J. Dean *ICLR* (2017)

Core elements

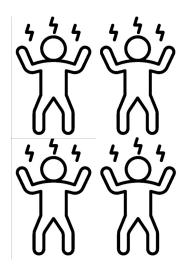
 A MoE is a hierarchical ensemble of specialized experts controlled by a gating function

EXPERT

A model **specialized in** a specific **domain or representation**, trained to detect certain patterns.

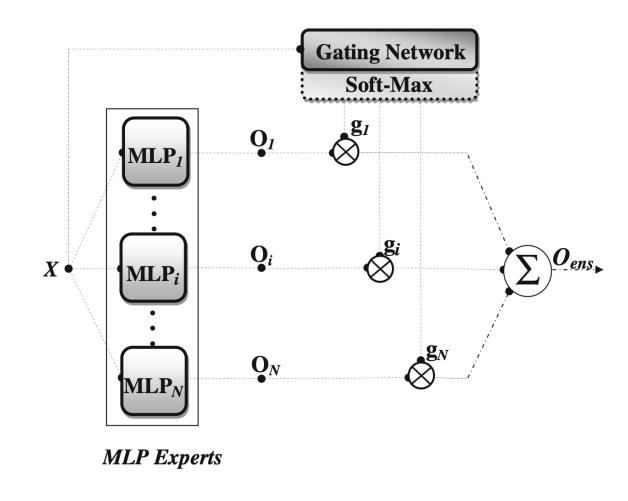
GATING NETWORK

A controller model that analyzes the input and **dynamically determines the contribution** of each expert to the output



Flexibility as key

- Training data can be partitioned among models deterministically or stochastically
- Experts and the gating network can be trained jointly or sequentially
- Expert selection at inference can be hard (few) or soft (weighted)
- MoEs act as "smart" ensembles, using a divide-and-conquer strategy to maximize performance



Prototypical MoE framework during inference with soft expert selection.

MoEs for Speech Deepfake Detection

EXPERT

A synthetic speech detector

- Traditional: ResNets, LCNNs
- SincNet-based: RawNet2, AASIST
- SSL: wav2vec 2.0, XLS-R

GATING NETWORK

A shallower custom neural network

- MLP
- Transformer Layer

Leverage each model's strengths and compensate for their weaknesses

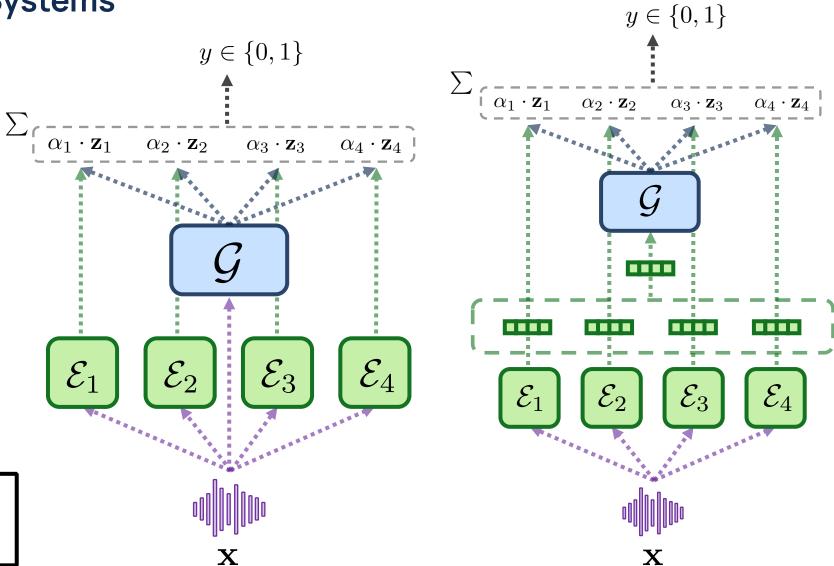
Remember a wide range of different deepfake types simultaneously

Leveraging Mixture of Experts for Improved Speech Deepfake Detection
V. Negroni, D. Salvi, A. I. Mezza, P. Bestagini, S. Tubaro – IEEE ICASSP 2025

Rationale

- A priori (deterministic) partitioning of the input data: domain experts
 - Experts are first pre-trained in their domain, then trained jointly with the gating network
- Inference: soft expert selection
 - \circ Expert weights α are calculated by applying a softmax function to the logits produced by the gating network.
 - Each weight can be interpreted as the percentage of involvement of each expert in the decision for a given input.

Proposed Systems



Standard MoE

 \mathbf{X}

Enhanced MoE

Evaluation Setup

CONSIDERED DATASETS

KNOWN DOMAINS:

- 1. ASVspoof 2019
- 2. Fake-Or-Real
- 3. ADD 2022
- 4. In-The-Wild

UNKNOWN DOMAINS:

- 1. Purdue dataset
- 2. TIMIT-TTS

ARCHITECTURES

- EXPERTS: LCNN
- 2. GATING NETWORK:
 - FC Layer
 - Dropout
 - o BN
 - LeakyReLU

BASELINES

- 1. Average Ensemble
- 2. Joint Training

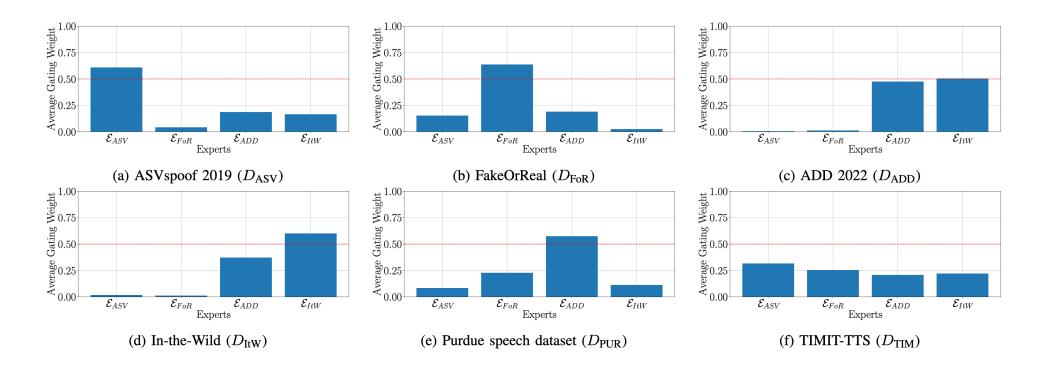
Detection Results

- MoE models, particularly the **Enhanced MoE**, outperform all other approaches.
- Individual experts' results reveal extremely poor generalization.
- Effectiveness on both known and unseen datasets.
- Unusual discrepancy between known and unknown performances due to a challenging known dataset.

	D_{ASV}		$D_{ m I}$	FoR	$D_{ m A}$	DD	D_1	ItW	$D_{ m F}$	PUR	$D_{ m T}$	TIM	Kne	own	A	.ll
	$\mathrm{EER}\downarrow$	AUC ↑	EER↓	AUC ↑	EER↓	AUC ↑	$\mathrm{EER}\downarrow$	AUC ↑	\mid EER \downarrow	AUC ↑	$\mathrm{EER}\downarrow$	AUC ↑	\mid EER \downarrow	AUC ↑	$\mathrm{EER}\downarrow$	AUC ↑
$\mathcal{E}_{\mathrm{ASV}}$	8.80	97.24	23.10	86.33	47.48	53.26	43.56	59.07	33.45	72.29	11.40	94.40	30.74	73.98	27.97	77.10
$\mathcal{E}_{ ext{FoR}}$	29.11	78.03	14.75	92.25	46.84	57.90	19.09	88.15	23.21	83.36	8.37	95.62	27.45	79.08	23.56	82.55
$\mathcal{E}_{ ext{ADD}}$	55.62	36.39	2.34	61.78	35.60	69.62	63.68	32.43	24.39	47.71	98.84	0.07	39.31	50.06	46.75	52.93
$\mathcal{E}_{ ext{ItW}}$	24.23	81.76	19.30	89.72	43.55	59.31	0.38	99.89	15.73	91.34	7.21	97.62	21.87	82.67	18.40	86.61
Ensemble	13.43	93.80	10.29	97.03	38.54	67.29	11.20	95.96	21.98	82.77	29.30	75.49	18.37	88.52	20.79	85.39
Joint Training	9.29	96.57	3.80	98.56	30.86	72.23	0.98	99.73	12.38	84.66	3.26	94.26	11.23	91.77	10.10	91.00
MoE (proposed)	9.45	96.17	2.74	99.43	30.87	76.04	0.55	99.83	2.53	$\boldsymbol{94.52}$	6.98	97.73	10.90	92.87	8.85	93.95

Gating Network Analysis

- Analyze the average gating weights across various datasets
- Assess each **expert's contribution** to predictions on each domain
- Valuable insights into the similarity between different domains.



Experimental ResultsContributions so far

MoE frameworks can be easily employed within the speech deepfake detection scenario

MoEs can significantly improve **generalization** without introducing scalability issues

MoEs can provide insights into domain similarities and differences

Attention-based Mixture of Experts for Robust Speech Deepfake Detection V. Negroni, D. Salvi, A. I. Mezza, P. Bestagini, S. Tubaro – IEEE WIFS 2025

Context: SAFE Challenge 2025

Overview

Organization

3 different tasks, 90 days of time 10 teams, > 900 submissions

Blind Evaluation Protocol

No data is released Models & sources kept secret

Evaluation

Submit the detector with a *binary* output Evaluated on a *Public* and a *Private* split Metrics: Bal. Acc., TPR, TNR

Let's engage with challenges more!

Context: SAFE Challenge 2025

Tasks Structure

Task 1: Detection of Generated Voice Audio

21 real sources - 13 TTS models

Task 2: Detection of Post-processed Generated Audio

Test how performance is affected by post-processing techniques

Task 3: Detection of Laundered Generated Audio

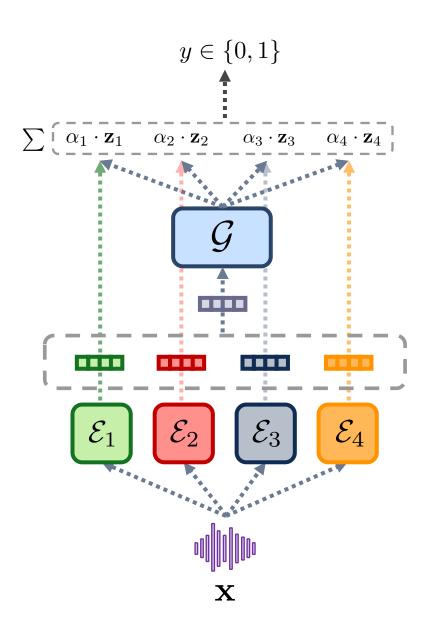
Synthetic audio is laundered to evade detection

Paradigm Shift: MELE vs MILE

Previously...

- Each expert was trained on a different dataset,
 specializing it in a specific domain
- Gating network **dynamically weights** experts at inference
 - Strong generalization
 - Interpretability

Can we boost performance even more?

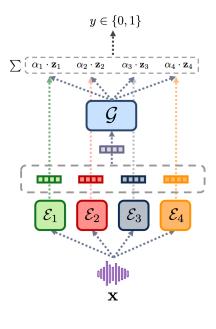


Paradigm Shift: MELE vs MILE

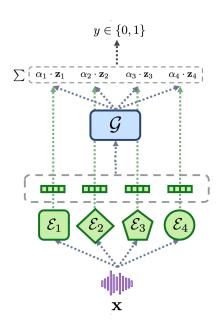
- Given **strong generalization capabilities** of MoEs, we used it as foundation for our detector for the SAFE challenge
- Key changes:
 - Enhanced Gating Network
 - Transformer-based encoder
 - Captures temporal & contextual dependencies across experts
 - 2 MELE → MILE
 - From identical, domain-specific experts (MELE)
 - To diverse architectures trained on the same data (MILE)

Paradigm Shift: MELE vs MILE

- In our ICASSP paper we considered a Mixture of Explicitly Localized Experts (MELE)
 - Identical expert architectures, each trained on different domains (i.e., different datasets)
- In this work we adopt a Mixture of Implicitly Localized Experts (MILE)
 - Different expert architectures, all trained on the same data
- We consider 3 experts, each with its own architecture, and a Transformer-based encoder for cross-expert attention as a gating network

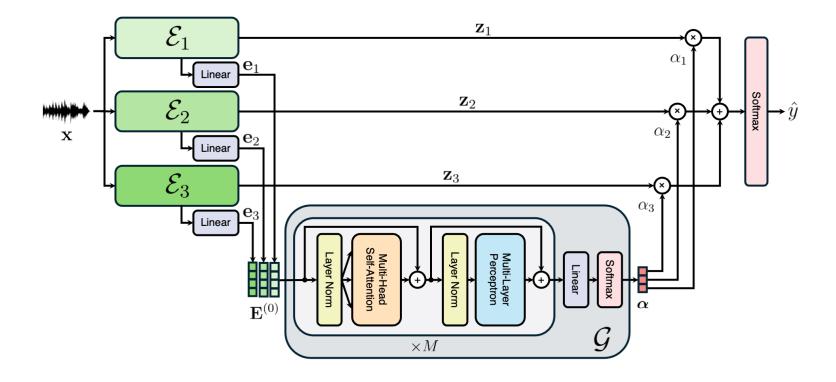


MELE
Mixture of Explicitly Localized Experts
ICASSP 2025



MILE
Mixture of Implicitly Localized Experts
WIFS 2025

EXPERTS' ARCHITECTURE	SAME	DIFFERENT
EXPERTS' TRAINING SET	DIFFERENT	SAME



- Implicit Expert Localization: the system stochastically partitions the data domain by leveraging the architectural biases of all its distinct deepfake detectors
- The gating network is as a transformer encoder with 2 layers

Evaluation Setup

Challenge Setup

TRAINING DATASETS

- 1. ASVspoof 2019
- 2. Fake-Or-Real
- 3. MLAAD
- 4. In-The-Wild
- 5. DiffSSD
- 6. LibriSpeech
- 7. LJspeech
- 8. VCTK
- 9. Mozilla CommonVoice

EXPERTS

- 1. LCNN + MelSpec
- 2. ResNet + MelSpec
- 3. ResNet + LogSpec

DATA AUGMENTATION

SpecAugment Noise injection (RawBoost)

Paper Setup

TRAINING DATASETS

- 1. ASVspoof 2019
- 2. Fake-Or-Real
- 3. MLAAD
- 4. In-The-Wild

TEST DATASETS

- 1. ASVspoof 2021
- 2. Purdue Dataset
- 3. ASVspoof 5

EXPERTS

- 1. LCNN + MelSpec
- 2. ResNet + MelSpec
- 3. ResNet + LogSpec

DATA AUGMENTATION

N/A

Public Evaluation Set - Task 1

Model	odel Generated Acc.		Balanced Acc.
MoE (Proposed)	0.859	0.933	0.896
LCNN + MelSpec	0.864	0.799	0.832
ResNet + MelSpec	0.836	0.866	0.851
ResNet + LogSpec	0.837	0.916	0.877

Public + Private Evaluation Set - Task 1

REAL DATA

	ISPL	VIPER- PURDUE	ISSF	ANON- PEKING	JAIST- HIS	DMF
Mandarin Podcast 1	0.90	0.87	0.87	0.89	0.68	0.61
Fleurs German	0.90	0.86	0.58	0.69	0.72	0.83
VSP Semi-professional	0.90	0.80	0.87	0.89	0.71	0.65
youtube phonecall	0.86	0.78	0.84	0.84	0.73	0.64
VSP Documentary	0.87	0.84	0.87	0.81	0.66	0.69
Arabic Speech Corpus	0.62	0.38	0.39	0.59	0.68	0.43
High Quality Podcasts	0.85	0.74	0.83	0.71	0.71	0.52
Japanese Shortwave	0.90	0.65	0.48	0.84	0.68	0.92
Conference	0.88	0.79	0.86	0.63	0.63	0.48
English Podcast	0.89	0.78	0.86	0.78	0.73	0.48
Fleurs English	0.90	0.84	0.71	0.56	0.73	0.89
Dipco	0.88	0.87	0.84	0.54	0.41	0.90
Digitized Cassette	0.90	0.87	0.69	0.89	0.73	0.87
Librivox	0.86	0.83	0.69	0.86	0.73	0.65
Old Radio	0.90	0.76	0.83	0.65	0.72	0.51
phone home	0.89	0.69	0.53	0.69	0.73	0.83
Russian Audiobook	0.89	0.56	0.52	0.48	0.46	0.53
Mandarin Podcast 2	0.90	0.87	0.86	0.77	0.73	0.91
VSP Home Mic	0.88	0.83	0.87	0.88	0.73	0.59
Radio Drama	0.89	0.82	0.81	0.78	0.73	0.54
VSP Professional	0.89	0.76	0.84	0.79	0.73	0.67
accuracy	0.87	0.77	0.75	0.74	0.68	0.67

FAKE DATA

	ISPL	VIPER- PURDUE	ISSF	ANON- PEKING	JAIST- HIS	DMF
elevenlabs	0.97	0.88	0.64	0.82	0.58	0.71
fish	0.94	0.79	0.81	0.81	0.91	0.62
hierspeech	0.76	0.62	0.87	0.62	0.86	0.63
kokoro	0.98	0.90	0.87	0.84	0.80	0.73
parler	0.97	0.74	0.86	0.80	0.48	0.66
seamless	0.93	0.90	0.76	0.86	0.94	0.75
style	0.82	0.71	0.86	0.46	0.46	0.75
cartesia	0.91	0.84	0.47	0.81	0.67	0.72
edge	0.68	0.83	0.82	0.85	0.73	0.73
f5	0.90	0.67	0.63	0.72	0.50	0.56
metavoice	0.88	0.80	0.58	0.76	0.56	0.71
openai	0.86	0.85	0.87	0.75	0.92	0.72
zonos	0.71	0.48	0.65	0.56	0.45	0.52
accuracy	0.87	0.77	0.75	0.74	0.68	0.67

Real Accuracy: 0.87 Fake Accuracy: 0.87

Tasks 2 and 3

TASK 2 - Postprocessing

	ISPL	VIPER- PURDUE	ISSF	ANON- PEKING	JAIST- HIS	DMF
aac 16k	0.77	0.72	0.80	0.82	0.62	0.59
encodec	0.92	0.66	0.76	0.85	0.82	0.58
focalcodec	0.95	0.63	0.84	0.83	0.87	0.57
mp3-aac-mp3 16k	0.67	0.79	0.83	0.83	0.62	0.59
mp3-aac 16k	0.73	0.78	0.81	0.82	0.60	0.59
mp3 16k	0.83	0.78	0.79	0.78	0.60	0.58
mp3 VBR	0.84	0.74	0.79	0.76	0.68	0.58
noise	0.70	0.45	0.52	0.54	0.61	0.58
opus 16k	0.69	0.73	0.73	0.83	0.77	0.61
phone audio	0.71	0.61	0.85	0.79	0.64	0.56
pitch shift	0.85	0.70	0.81	0.77	0.87	0.60
resample down	0.77	0.63	0.77	0.76	0.67	0.57
resample up	0.82	0.61	0.76	0.76	0.69	0.57
semanticodec	0.83	0.67	0.74	0.85	0.88	0.58
snac	0.78	0.65	0.73	0.81	0.87	0.60
speech filter	0.76	0.61	0.79	0.67	0.67	0.45
time stretch	0.85	0.69	0.85	0.78	0.88	0.61
vorbis 16k	0.86	0.67	0.75	0.75	0.69	0.57
accuracy	0.80	0.67	0.77	0.78	0.72	0.58

TASK 3 - Laundering

	ISPL	VIPER- PURDUE	ISSF	ANON- PEKING	JAIST- HIS	DMF
car	0.67	0.50	0.51	0.53	0.60	0.57
played	0.62	0.54	0.67	0.54	0.67	0.54
played reverb car	0.58	0.69	0.67	0.49	0.71	0.35
reverb	0.75	0.46	0.58	0.70	0.64	0.58
accuracy	0.66	0.55	0.61	0.57	0.66	0.51

We obtained the **best performance** also in Tasks 2-3, even if our solution was not tailored for them

Further Experiments and Validation

- Extended evaluation of the proposed architecture in the paper
- Attention-based MILE MoE, outperformed alternative architectures, showing stronger detection on both in-domain and out-of-domain data

	ASVspoof 2019	FakeOrReal	In-the-Wild	MLAAD Purdu	e ASVspoof 2021	ASVspoof 5	Known	Unknown	Overall
\mathcal{E}_{ASV19}	9.11	5.70	39.08	43.78 33.84	31.43	29.43	24.42	31.44	27.43
$\mathcal{E}_{ ext{FOR}}$	27.90	6.05	20.44	46.49 11.53	34.29	35.54	25.22	27.97	26.40
$\mathcal{E}_{ ext{ITW}}$	21.65	2.03	0.40	35.31 13.61	43.64	37.13	14.85	30.94	21.75
$\mathcal{E}_{ ext{MLA}}$	27.97	61.84	23.91	1.56 60.77	60.91	30.35	28.82	50.67	38.18
MELE-Cat	7.37	2.69	1.17	1.24 3.88	31.82	15.00	3.12	16.31	8.77
MELE-Att	7.25	1.90	1.10	1.02 4.53	29.87	15.34	2.82	15.75	8.36

	ASVspoof 2019	FakeOrReal	In-the-Wild	MLAAD	Purdue	ASVspoof 2021	ASVspoof 5	Known	Unknown	Overall
MILE-Att	8.38	0.04	0.57	0.04	6.49	17.27	17.69	2.26	14.15	7.35
MELE-Att MILE-Cat	7.25 8.86	1.90 0.00	1.10 0.37	1.02 0.07	4.53 10.68	29.87 18.18	15.34 18.72	2.82 2.32	15.75 18.09	8.36 9.08

Outcomes and Limitations

- MoEs hold more capacity and can be significantly more robust than individual detectors
- Different theorethical frameworks can offer equal valuable contribution to SDD
- Attention in the gating mechanism can make a difference

- MoEs' flexibility makes systematic ablations difficult
- We likely explored only ~1% of what's possible in SDD with MoEs
- We lost something nowadays we cannot afford to sacrifice anymore: interpretability

Future Directions on MoEs

Include SSL models in the recipe

Systematically evaluate expert combinations and training strategy

- Same experts, different feature sets
- Different experts, same feature set
- Expert pre-training vs no pre-training
- Shared loss with the gate or distinct loss functions

Future Directions on MoEs

- Systematic investigation of the **optimal number** of experts
 - Explore sequential addition
 - Monitor complexity vs. gain
- lnvestigate potential in continual learning scenarios
 - Adaptive MoEs with experts pruning or merging
- Explore novel *hard* gating mechanisms
 - Dynamic expert routing varying with computational budget
 - Confidence-based or context-based routing strategies

Future Directions on MoEs

Explore the potential of **MoE** *layers* for large heavy models

- Evaluate efficiency (e.g., sparse activation, routing constraints)
- Investigate routing patterns to gain interpretable insights

Interpretability of MoE Decisions

- Weight analysis can also be valuable in a MILE configuration!
- Carefully choose experts kind to later draw cues on what led to the final prediction based on their characteristics
- Deliberately design experts with known inductive biases

Feel free to contact me! viola.negroni@polimi.it