

Traceability and Copyright Protection in Neural Speech Process

Institute of Automation, Chinese Academic of Science
Junzuo Zhou

Audio Watermarking: Concept

Embed encrypted information into speech; Detect and decode via dedicated models

Copyright protection

Traceability of synthesized speech sources

Regulatory registration and supervision of synthesized speech content

.....

Key property of audio watermarking:

Imperceptible to human auditory perception

Image watermarking: primarily emphasizes *robustness*, enabling reliable detection and verification

Image steganography: primarily emphasizes *concealment* and *information confidentiality*

Audio Watermarking: Evaluation

Trade-off Properties

- Imperceptibility: Signal-to-Noise Ratio (SNR) and Speech Quality Metrics such as PESQ
- Capacity: Average Embeddable Bits per Second (BPS)
- Robustness: BER between decoded and original bits, average bitwise accuracy, AUC, or TPR@FPR = 0.01

Once imperceptibility is ensured, the trade-off between robustness and embedding capacity is determined by the target application requirements

Audio Watermarking: Development

Conventional speech watermarking methods are based on expert knowledge and heuristic design, exhibiting limited generalization and robustness.

	ral Spo ermark		2023.12 WavMark	2024.3 TracebleSpeech		024.8 MCodec 	
2022.9 DNN-WM	2023.6 Dear	2023.9 Collaborator、 MaskMark	2023.12 Timbre WM	2024.3 AudioSeal	2024.4 Groot	2024.9 SSR-Speech SynthID 	~

- 1: General Post-hoc Audio Watermarking Methods
- 2: Task-driven / Task-integrated Audio Watermarking
- 3: Audio Watermarking for Open-source Models

DNN-WM

- 1: Embedding performed in the STFT frequency domain
- 2: Robust against three types of attacks (dropout, random noise, high-pass filtering)
- 3: Low embedding capacity (2.5 bit / 2 s):

Pavlović K, Kovačević S, Djurović I, et al. Robust speech watermarking by a jointly trained embedder and detector using a DNN[J]. Digital Signal Processing, 2022, 122: 103381.

DeAR

- 1: Embedding performed in the DWT frequency domain
- 2: Watermark integrated via an encoder with residual design to adjust the watermark—speech ratio
- 3: Considers audio transcription environments as simulated attacks
- 4: Further improved embedding capacity (100 bit / 11 s)

Liu C, Zhang J, Fang H, et al. Dear: A deep-learning-based audio re-recording resilient watermarking[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(11): 13201-13209.

WavMark

- 1: Encoding and decoding with a reversible network design:
 - $y = f(x), x = f^{-1}(x)$
- 2: Evaluated under nine simulated attacks:
- 3: Further improved embedding capacity (32 bit / 1 s)
- 4: Watermark segment localization in long speech
 - detection window with force matching
 - pattern(16bit) + payload(16bit)

Chen G, Wu Y, Liu S, et al. Wavmark: Watermarking for audio generation[J]. arXiv preprint arXiv:2308.12770, 2023.

AudioSeal

- 1: Watermark embedding without involving the spectrum
- 2: Frame-level localization of watermark segments
 - precision up to 1/16k second
- 3: Unified architecture for watermark detection and payload extraction
- 4: Maintains embedding capacity (16 bits / 1 s) and robustness

San Roman R, Fernandez P, Elsahar H, et al. Proactive Detection of Voice Cloning with Localized Watermarking[C]//ICML 2024-41st International Conference on Machine Learning. 2024, 235: 1-17.

General watermarking methods are post-hoc, multi-stage, and cascaded, rather than end-to-end systems.

Synthesized speech requiring traceability, copyrighted music requiring protection.....

Watermarked speech

Why we need task-driven watermarking

Collaborator Watermarking

- 1: Enhance detectability of real/fake labels during speech synthesis
 - integrate watermark indicators into vocoder training
- 2: Use a speech forgery detection model as the watermark detector

The indicator only reflects authenticity (real/fake) without recovering watermark content

Juvela L, Wang X. Collaborative watermarking for adversarial speech synthesis[C]//ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024: 11231-11235.

- Watermark embedded during generation, improving imperceptibility
- Stage 1: Watermark embedding + codec integration Stage 2: VALLE in speech synthesis

Figure 1: The first stage: Watermarking mechanism integrate into neural codec.

- Codec jointly training
- Imprint watermarks into pre-decoder features
- TTS-specific Imprint Strategy
- Frame-wise broadcast watermark features
- Full-span protection for temporal robustness
- •Supports **flexibility** to variable-length inference

Figure 2: The second stage: Watermarking mechanism integrate into language model of VALL-E.

Zhou J, Yi J, Wang T, et al. TraceableSpeech: Towards Proactively Traceable Text-to-Speech with Watermarking[C]//Proc. Interspeech 2024. 2024: 2250-2254.

Imperceptibility

Table 1: Watermark Imperceptibility Metrics in Speech Reconstruction

Model	PESQ ↑	STOI ↑	ViSQOL ↑
HiFicodec + WavMark(16bit)	3.197	0.947	3.880
TraceableSpeech(4@10) TraceableSpeech(4@16)	3.641 3.569	0.950 0.948	4.060 3.985

¹ @ denotes the watermarking capacity. For example, 4@16 indicates 4-digit base-16, equivalent to the 16-bit capacity of WavMark used in the baseline. This annotation is applicable to other tables as well.

Table 2: Speech Quality in Zero-Shot Speech Synthesis

Model	WER(%) ↓	MOS↑
VALL-E + WavMark(16bit)	10.80	3.554 ± 0.19
TraceableSpeech(4@10)	9.61	3.959 ± 0.18
TraceableSpeech(4@16)	10.47	3.905 ± 0.17

19 18 17

 In both experiments, imperceptibility improved.

Robustness

- Resist temporal-editing attacks (resplicing).
- Robust even when 2/3 of the speech is randomly removed.

Table 3: Watermark extraction accuracy (%) under various attacks

Attack Model	Resplicing	Normal	RSP-90	Noise-W35	SD-01	AR-90	EA-0315	LP5000
VALL-E + WavMark(16bit)	No	100.00	99.76	91.41	100.00	100.00	94.53	100.00
TraceableSpeech(4@10)	No	100.00	100.00	100.00	100.00	100.00	100.00	100.00
TraceableSpeech(4@16)	No	98.97	98.82	98.95	99.12	99.46	97.71	98.84
VALL-E + WavMark(16bit)	Once	91.10	91.46	63.53	95.95	93.61	88.58	89.66
TraceableSpeech(4@10)	Once	100.00	100.00	100.00	99.90	100.00	100.00	100.00
TraceableSpeech(4@16)	Once	100.00	99.82	99.83	98.78	99.50	99.57	99.62
VALL-E + WavMark(16bit)	Twice	76.65	77.74	49.14	79.47	85.46	68.19	75.32
TraceableSpeech(4@10)	Twice	100.00	100.00	100.00	100.00	100.00	100.00	100.00
TraceableSpeech(4@16)	Twice	99.58	99.20	99.58	99.56	99.00	99.65	98.83

The resplicing column mean the times of resplicing attack

Flexibility

Table 4: Watermark extraction accuracy (%) of larger capacity models under various speech durations (s)

•With a 4-bit 64-base watermark in 0.3s speech, TraceableSpeech extracts with 95%+ accuracy.

Duration Model	1.0	0.8	0.5	0.3	0.2	0.175	0.15	0.125	0.1
TraceableSpeech(4@32) TraceableSpeech(4@64)		100.00 100.00							50.51 17.01

Goal Scenario: Authenticity verification in speech codec transmission (Watermark is embedded before compression (encoder side) and still successfully extracted after decoding

Fig. 1. Example of Watermark as Verification Marking for Codec Protection

Challenges of prior SOTA:

- Quantization distortion in codecs makes watermark extraction significantly harder
- Simple fusion between watermark and speech features limit accuracy

Core Design:

- End-to-end training with precompression embedding + postdecoding extraction
- Iteratively fuses watermark info with speech through cross-modal attention (Attention Imprint Unit)

Zhou J, Yi J, Ren Y, et al. WMCodec: End-to-End Neural Speech Codec with Deep Watermarking for Authenticity Verification[C]//ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE

Rethinking Audio Watermark Evaluation

Imperceptibility: Basic Demand.

Capacity: Further Demand.

Robustness: Generalization and Practicality out of the Dataset

Audio Watermarking Classification: A Different Perspective

Applied as a Plugin in Speech Synthesis Models Parameter

- Vocoder
- Codec Decoder

- · Audio-level watermarking
- Feature-level Watermarking
- Parameter-level Watermarking

Open-Source White-Box Protection

Flexibility (modifiable before release)

Security (difficult to remove with after release)

Parameter-level Watermarking

Ren Y, Yi J, Wang T, et al. P2Mark: Plug-and-play Parameter-intrinsic Watermarking for Neural Speech Generation[J]. arXiv preprint arXiv:2504.05197, 2025

Parameter-level Watermarking

P2Mark: Plug-and-play Parameter-intrinsic Watermarking for Neural Speech Generation

- Add watermark embeddings as a diagonal matrix to LoRA;
- Replace decoder 1-D convolutions with LoRA ones:
- Jointly train with watermark encoder/decoder;

Thank you!

2025/10/6