

Towards End-to-End Private Automatic Speaker Recognition

Francisco Teixeira, Alberto Abad, Bhiksha Raj and Isabel Trancoso

francisco.s.teixeira@tecnico.ulisboa.pt

inesc-id.pt

Motivation: Problem setting

Motivation: State-of-the-art

Motivation: Proposed solution

Motivation: Proposed solution

5

- Motivation
- Secure Multiparty Computation
- Privacy-preserving speaker embedding extraction: security settings
- Implementation and experimental setup
- Results
- Conclusions and future work

Secure Multiparty Computation (SMC)

- Family of cryptographic protocols that allow two or more parties to interactively (and privately) compute functions, e.g.:
 - Arithmetic Secret Sharing
 - Boolean Secret Sharing
 - Garbled Circuits
- Arithmetic Secret Sharing:

P1 Input: x $\langle x \rangle_1 = r_x$ $\langle x \rangle_2 = x - r_x$ P2 Input: y $\langle y \rangle_1 = r_y$ $\langle y \rangle_2 = y - r_y$

Secure Multiparty Computation: Arithmetic Secret Sharing

• *n*-party setting: the owner of the data generates *n*-1 random values, with each secret share being defined as:

$$\langle x \rangle_n = x - \sum_{i=1}^{n-1} r_i$$
 $x = \sum_{i=1}^n \langle x \rangle_i$

- It is then possible to perform operations over multiple shared values:
 - Additions can be performed locally;
 - Multiplications require *multiplication triples* (also called *Beaver triples*).

Secure Multiparty Computation: Multiplication Triples

We want to compute $\langle z \rangle = \langle x \rangle \times \langle y \rangle$

• Assume we have pre-computed secret-shared values $\langle a \rangle$, $\langle b \rangle$ and $\langle c \rangle$, such that:

 $\langle c \rangle = \langle a \rangle \times \langle b \rangle$

• To perform a multiplication each party sets local shares $\langle e \rangle_i, \langle f \rangle_i$ as:

 $\langle e \rangle_i = \langle x \rangle_i - \langle a \rangle_i \qquad \langle f \rangle_i = \langle y \rangle_i - \langle b \rangle_i$

• All parties then interact to reconstruct e and f, and set their share of $\langle z \rangle$ to

$$\langle z \rangle_i = i \cdot e \cdot f + f \cdot \langle a \rangle_i + e \cdot \langle b \rangle_i + \langle c \rangle_i$$

Secure Multiparty Computation: Boolean Secret Sharing

• The previous representation is easily adaptable to binary representations:

$$\langle x \rangle_n = x \bigoplus \sum_{i=1}^{n-1} s_i \qquad \qquad x = \langle x \rangle_1 \bigoplus \langle x \rangle_2 \bigoplus \dots \bigoplus \langle x \rangle_n$$

- Similarly to Arithmetic Secret Sharing:
 - XORs can be computed locally;
 - AND operations require *multiplication triples*.
- We can convert between Arithmetic and Boolean domains using pre-computed values shared in both domains (e.g. *daBits, edaBits*).

Secure Multiparty Computation: Replicated Secret Sharing

- A (more efficient) variant of the previous secret sharing protocol:
 - Instead of having a single share, each party holds a *set* of shares per value.

e.g. consider three parties, and a secret-shared value x:

P1 will hold: $\langle x \rangle_1$, $\langle x \rangle_2$

$$x = \sum_{i=1}^{3} \langle x \rangle_i$$

P2 will hold: $\langle x \rangle_2$, $\langle x \rangle_3$

P3 will hold: $\langle x \rangle_3$, $\langle x \rangle_1$

Secure Multiparty Computation: Replicated Secret Sharing

- A (more efficient) variant of the *vanilla* secret sharing protocol:
 - Additions are performed locally by each party.
 - Multiplications **no longer** require *multiplication triples*.

e.g. Simple multiplication protocol for three parties ($\langle z \rangle = \langle x \rangle \times \langle y \rangle$):

• Each party multiplies the shares it holds for each value locally and obtains:

$$z_{1} = \langle x \rangle_{1} \langle y \rangle_{1} + \langle x \rangle_{1} \langle y \rangle_{2} + \langle x \rangle_{2} \langle y \rangle_{1}$$
$$z_{2} = \langle x \rangle_{2} \langle y \rangle_{2} + \langle x \rangle_{2} \langle y \rangle_{3} + \langle x \rangle_{3} \langle y \rangle_{2}$$
$$z_{3} = \langle x \rangle_{3} \langle y \rangle_{3} + \langle x \rangle_{3} \langle y \rangle_{1} + \langle x \rangle_{1} \langle y \rangle_{3}$$

• *Re-sharing* protocol is required.

Secure Multiparty Computation: Security models

• Honest-but-curious model:

 Parties are assumed to follow the protocol, but to try to get as much information as possible.

• Malicious model:

- Parties are assumed to try to thwart the protocol to gain more information.
- Requires specific protocols to ensure all parties are "behaving" correctly, e.g.:
 - Cut-and-choose methods;
 - Zero-Knowledge (ZK) proofs;
 - Message Authentication Codes (MACs).
- Honest majority vs dishonest majority

Privacy-preserving speaker embedding extraction

Privacy-preserving speaker embedding extraction: Security setting

2-party setting

Simplest/most natural setting

- Honest-but-curious security
- Malicious security

Privacy-preserving speaker embedding extraction: Security setting

3-party setting:

– Allows the instantiation of more efficient protocols

Privacy-preserving speaker embedding extraction: Security setting

4-party setting:

- 4-party Replicated Secret Sharing Protocol of Dalskov et al. [1].
- Provides honest-majority security against one malicious party.

Experimental setup

- Pre-trained SpeechBrain *x-vector* speaker embedding extraction model [2]:
 - 3.2% EER on Voxceleb 1 test set
- MP-SPDZ library [3]:
 - Implements linear and non-linear operations required for the *x-vector* extraction network.
- Protocols used:
 - Semi₂^k: 2-party semi-honest protocol [4]
 - 3-party RSS: semi-honest protocol (Araki et al. [5])
 - 4-party RSS: malicious protocol w/ honest majority (Dalskov et al. [1])
 - SPDZ₂^k: 2-party malicious protocol [4]

#	Layer	Input	Output	Kernel	Dilation
1	TDNN 1	24	512	5	1
2	TDNN 2	512	512	3	2
3	TDNN 3	512	512	3	3
4	TDNN 4	512	512	1	1
5	TDNN 5	512	1500	1	1
6	Statistics Pooling	1500	3000	-	-
7	Linear	3000	512	-	-

Table 1: x-vector extractor architecture

Experimental setup: Fixed-point representations

- In neural networks, weights are **floating-point** numbers.
- Shares in Arithmetic Secret Sharing protocols are integers.
 - It is not possible to compute random *real* numbers **uniformly** over an interval.
- In our implementation we use MP-SPDZ's **fixed-point** number representation:

$$x = y \cdot 2^f$$

- f represents a fixed precision
- y is a secret-shared value
- Additions can be computed without changes.
- Multiplications require an extra division/truncation by f.
 - Implemented as binary left-shift operation or specific *probabilistic truncation* protocol.

Protocol	Security model	Time	e (s)	Communication (MB)	
FIOLOCOI		Pre-processing	Online	Pre-processing	Online
2-party Semi ₂ ^k [4]	Semi-honest	>2 hours	≅19	≅1.6 TB	≅12.6 GB
2-party SPDZ ₂ ^k [4]	Malicious	>1 day	≅126	≅21 TB	≅27 GB
3-party RSS [5]	Semi-honest w/ honest majority	≅0.18	≅11	15	118
4-party RSS [1]	Malicious w/ honest majority	≅1.2	≅17	27	333

Table 2: Computational and communication costs for the extractionof speaker embeddings from 3-second long speech recordings.

Protocol	Coqueity model	Time (s)		Communication (MB)	
FIOLOCOI	Security moder	Pre-processing	Online	Pre-processing	Online
2-party Semi ₂ ^k [4]	Semi-honest	>2 hours	≅19	≅1.6 TB	≅12.6 GB
2-party SPDZ ₂ ^k [4]	Malicious	>1 day	≅126	≅21 TB	≅27 GB
3-party RSS [5]	Semi-honest w/ honest majority	≅0.18	≅11	15	118
4-party RSS [1]	Malicious w/ honest majority	≅1.2	≅17	27	333

Table 2: Computational and communication costs for the extractionof speaker embeddings from 3-second long speech recordings.

Protocol	Security model	Time (s)		Communication (MB)	
FIOLOCOI		Pre-processing	Online	Pre-processing	Online
2-party Semi ₂ ^k [4]	Semi-honest	>2 hours	≅19	≅1.6 TB	≅12.6 GB
2-party SPDZ ₂ ^k [4]	Malicious	>1 day	≅126	≅21 TB	≅27 GB
3-party RSS [5]	Semi-honest w/ honest majority	≅0.18	≅11	15	118
4-party RSS [1]	Malicious w/ honest majority	≅1.2	≅17	27	333

Table 2: Computational and communication costs for the extractionof speaker embeddings from 3-second long speech recordings.

Conclusions & Future Work

- In this work we have shown that it is possible to extract *x-vector* speaker embeddings using Secure Multiparty Computation.
- By using SMC we are able to protect both the privacy of the speaker's voice as well as the ASV vendor's model.
- As future work it would be important to explore:
 - Techniques to reduce the size of the *x*-vector extraction network
 - Other security models that better fit real world scenarios (e.g. *covert security*).
- This work has also been recently applied to Automatic Speaker Diarization in the context of the CMU Portugal project PrivaDia.

inescid lisboa

Thank you!

francisco.s.teixeira@tecnico.ulisboa.pt

References

[1] Dalskov, A., Escudero, D. and Keller, M. "Fantastic Four: Honest-Majority Four-Party Secure Computation With Malicious Security." 30th USENIX Security Symposium (USENIX Security 21), 2021.

[2] Parcollet, T., et al. "Speechbrain: A general-purpose speech toolkit." (2022).

[3] Keller, M. "MP-SPDZ: A versatile framework for multi-party computation." Proceedings of the 2020 ACM SIGSAC conference on computer and communications security. 2020.

[4] Cramer, R., Damgärd, I., Escudero, D., Scholl, P. and Xing C., "SPD Z2k : Efficient MPC mod 2k for dishonest majority," in Annual International Cryptology Conference. Springer, 2018, pp. 769–798.

[5] Araki, T., Furukawa, J., Lindell, Y., Nof, A. and Ohara, K. "High-throughput semi-honest secure three-party computation with an honest majority," in SIGSAC. ACM, 2016, p. 805-817.