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• Family of cryptographic protocols that allow two or more parties to interactively (and 
privately) compute functions, e.g.:

– Arithmetic Secret Sharing

– Boolean Secret Sharing

– Garbled Circuits

• Arithmetic Secret Sharing:

Secure Multiparty Computation (SMC)

𝑥 ! = 𝑥 − 𝑟"

𝑥 # = 𝑟"
𝑥

P1

Input:

𝑦 ! = 𝑦 − 𝑟$
𝑦 # = 𝑟$

𝑦
P2

Input:
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• n-party setting: the owner of the data generates n-1 random values, with each secret share
being defined as: 

• It is then possible to perform operations over multiple shared values:

– Additions can be performed locally;

– Multiplications require multiplication triples (also called Beaver triples).

Secure Multiparty Computation: Arithmetic Secret Sharing

𝑥 =#
!"#

$
𝑥 !𝑥 $ = 𝑥 −#

!"#

$%#
𝑟!
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We want to compute 𝑧 = 𝑥 × 𝑦

• Assume we have pre-computed secret-shared values 𝑎 , 𝑏 and 𝑐 , such that:

• To perform a multiplication each party sets local shares 𝑒 ! , 𝑓 ! as:

• All parties then interact to reconstruct e and f, and set their share of 𝑧 to

Secure Multiparty Computation: Multiplication Triples

𝑧 ! = 𝑖 ⋅ 𝑒 ⋅ 𝑓 + 𝑓 ⋅ 𝑎 ! + 𝑒 ⋅ 𝑏 ! + 𝑐 !

𝑐 = 𝑎 × 𝑏
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• The previous representation is easily adaptable to binary representations:

• Similarly to Arithmetic Secret Sharing:

– XORs can be computed locally;

– AND operations require multiplication triples.

• We can convert between Arithmetic and Boolean domains using pre-computed values 
shared in both domains (e.g. daBits, edaBits).

Secure Multiparty Computation: Boolean Secret Sharing

𝑥 , = 𝑥 ⨁'
-.#

,/#
𝑠- 𝑥 = 𝑥 #⨁ 𝑥 !⨁…⨁ 𝑥 ,
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• A (more efficient) variant of the previous secret sharing protocol:

– Instead of having a single share, each party holds a set of shares per value.

e.g. consider three parties, and a secret-shared value 𝑥:

Secure Multiparty Computation: Replicated Secret Sharing

𝑥 =#
!"#

&
𝑥 !
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Secure Multiparty Computation: Replicated Secret Sharing
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• A (more efficient) variant of the vanilla secret sharing protocol:

– Additions are performed locally by each party.

– Multiplications no longer require multiplication triples.

e.g. Simple multiplication protocol for three parties ( 𝑧 = 𝑥 × 𝑦 ):

• Each party multiplies the shares it holds for each value locally and obtains:

• Re-sharing protocol is required.

z" = 𝑥 " 𝑦 " + 𝑥 " 𝑦 # + 𝑥 # 𝑦 "

z# = 𝑥 # 𝑦 # + 𝑥 # 𝑦 $ + 𝑥 $ 𝑦 #

z$ = 𝑥 $ 𝑦 $ + 𝑥 $ 𝑦 " + 𝑥 " 𝑦 $



• Honest-but-curious model:
– Parties are assumed to follow the protocol, but to try to get as much information as 

possible.

• Malicious model:
– Parties are assumed to try to thwart the protocol to gain more information.

– Requires specific protocols to ensure all parties are “behaving” correctly, e.g.:
• Cut-and-choose methods;
• Zero-Knowledge (ZK) proofs;
• Message Authentication Codes (MACs).

• Honest majority vs dishonest majority

Secure Multiparty Computation: Security models
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Privacy-preserving speaker embedding extraction

ClientClient ASV vendor
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Privacy-preserving speaker embedding extraction: Security setting

ClientClient ASV vendor

2-party setting

Simplest/most natural setting
- Honest-but-curious security
- Malicious security
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Privacy-preserving speaker embedding extraction: Security setting

ClientClient ASV vendor

3-party setting:
– Allows the instantiation of more efficient protocols
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Privacy-preserving speaker embedding extraction: Security setting

ClientClient ASV vendor

4-party setting:
– 4-party Replicated Secret Sharing Protocol of Dalskov et al. [1].
– Provides honest-majority security against one malicious party.
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Experimental setup

• Pre-trained SpeechBrain x-vector speaker embedding
extraction model [2]:
– 3.2% EER on Voxceleb 1 test set

• MP-SPDZ library [3]:
– Implements linear and non-linear operations required 

for the x-vector extraction network.

• Protocols used:
– Semi2k: 2-party semi-honest protocol [4]
– 3-party RSS: semi-honest protocol (Araki et al. [5])
– 4-party RSS: malicious protocol w/ honest majority 

(Dalskov et al. [1])
– SPDZ2

k: 2-party malicious protocol [4]

# Layer Input Output Kernel Dilation

1 TDNN 1 24 512 5 1

2 TDNN 2 512 512 3 2

3 TDNN 3 512 512 3 3

4 TDNN 4 512 512 1 1

5 TDNN 5 512 1500 1 1

6 Statistics Pooling 1500 3000 - -

7 Linear 3000 512 - -

Table 1: x-vector extractor architecture
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• In neural networks, weights are floating-point numbers.

• Shares in Arithmetic Secret Sharing protocols are integers.

– It is not possible to compute random real numbers uniformly over an interval.

• In our implementation we use MP-SPDZ’s fixed-point number representation:

– f represents a fixed precision 

– y is a secret-shared value

• Additions can be computed without changes.

• Multiplications require an extra division/truncation by f.

– Implemented as binary left-shift operation or specific probabilistic truncation protocol.

Experimental setup: Fixed-point representations
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Results

Protocol Security model
Time (s) Communication (MB)

Pre-processing Online Pre-processing Online

2-party Semi2k [4] Semi-honest >2 hours ≅19 ≅1.6 TB ≅12.6 GB

2-party SPDZ2
k [4] Malicious >1 day ≅126 ≅21 TB ≅27 GB

3-party RSS [5] Semi-honest w/ honest majority ≅0.18 ≅11 15 118

4-party RSS [1] Malicious w/ honest majority ≅1.2 ≅17 27 333

Table 2: Computational and communication costs for the extraction 
of speaker embeddings from 3-second long speech recordings.
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• In this work we have shown that it is possible to extract x-vector speaker 
embeddings using Secure Multiparty Computation.

• By using SMC we are able to protect both the privacy of the speaker’s 
voice as well as the ASV vendor’s model.

• As future work it would be important to explore:
– Techniques to reduce the size of the x-vector extraction network
– Other security models that better fit real world scenarios (e.g. covert 

security).

• This work has also been recently applied to Automatic Speaker 
Diarization in the context of the CMU Portugal project PrivaDia.

Conclusions & Future Work
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Thank you!

francisco.s.teixeira@tecnico.ulisboa.pt
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