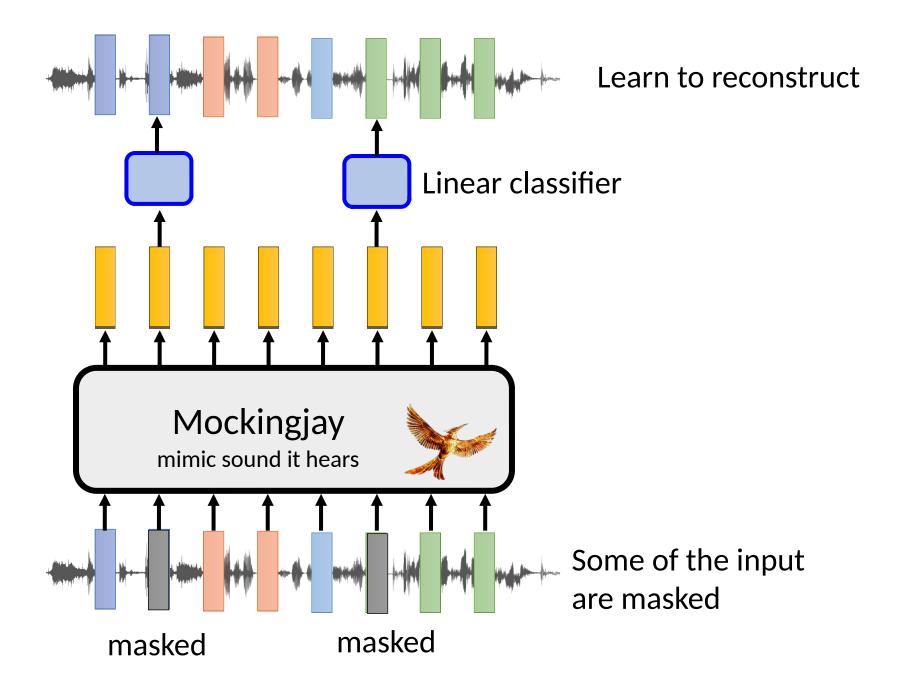
Towards Universal Self-supervised Model for Speech Processing Hung-yi Lee

https://speech.ee.ntu.edu.tw/~hylee/

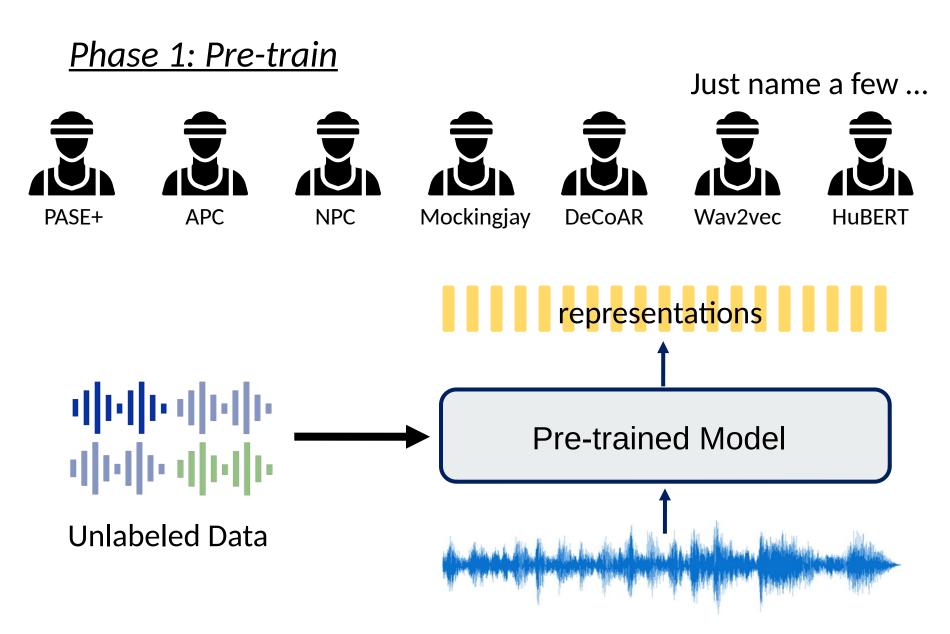
National Taiwan University 國立臺灣大學

Self-supervised Learning Framework

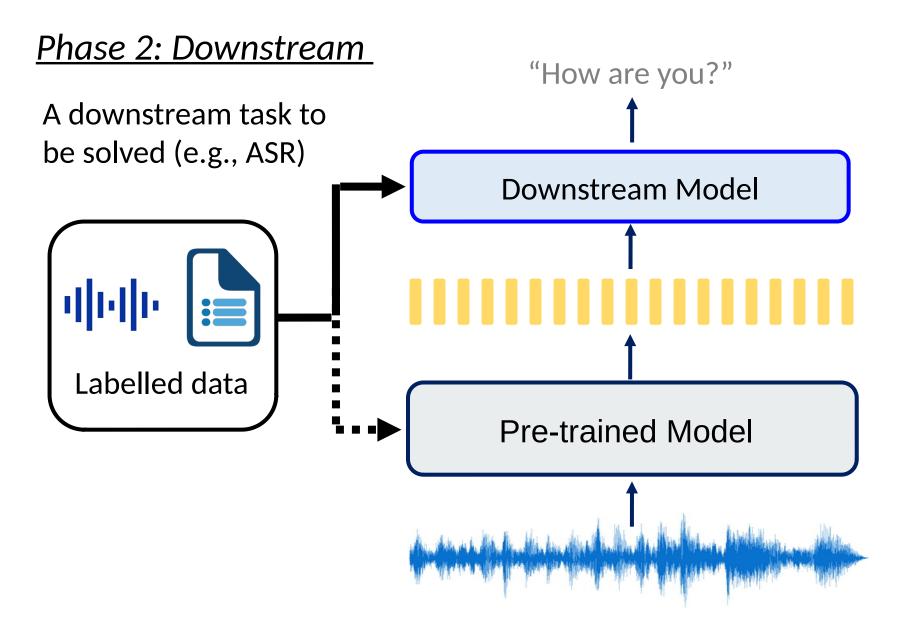
Phase 1: Pre-train (not complete survey) Mask the input signals and then reconstruct them. <u>Task-agnostic</u> Predict the targets obtained without human efforts. **Contrastive learning** representations վելեղելե **Pre-trained Model** վելի վելի **Unlabeled** Data



Self-supervised Learning Framework

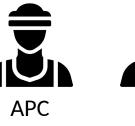


Self-supervised Learning Framework



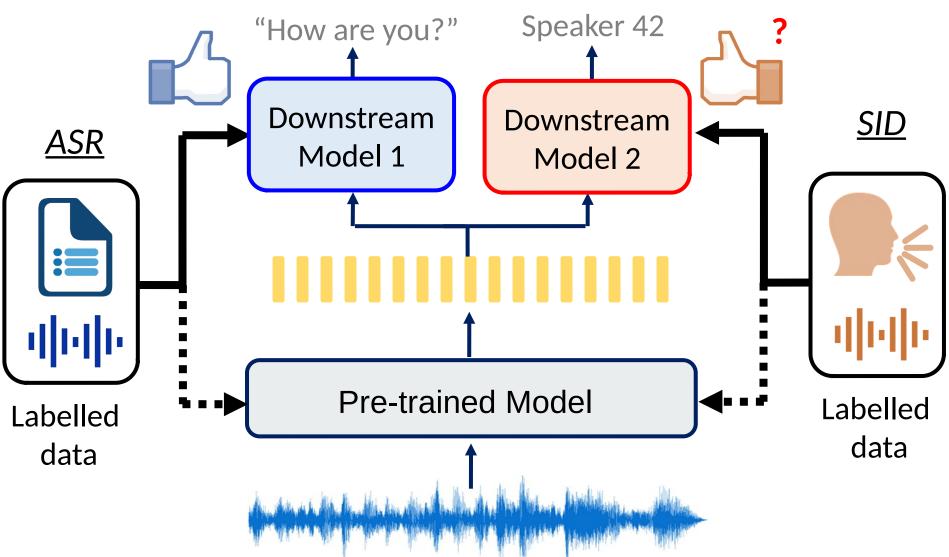
NPC

Just name a few ...



They have shown to achieve good performance on ASR.

Are they specialist for ASR? Or are they universal?



Just name a few ...

They have shown to achieve good performance on ASR.

Are they specialist for ASR? Or are they universal?

- I believe they are specialist.
- To be good at ASR, a model learns to extract content and ignore speaker.

NPC.

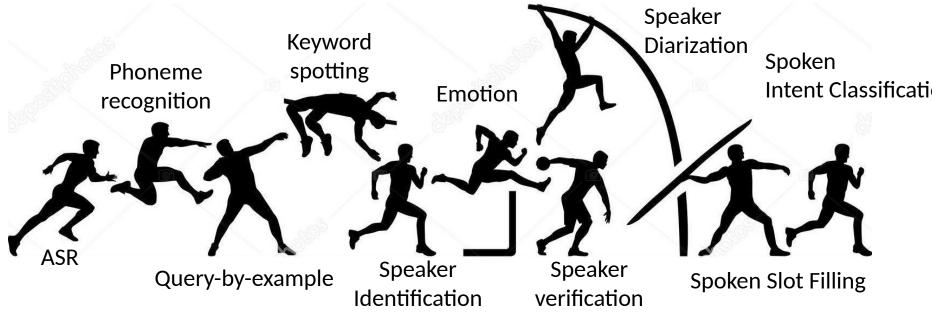
• Hence, super good on ASR Poor performance on speaker related

My two cents (one year ago)

tasks.

SUPERB

Speech processing Universal PERformance Benchmark



https://arxiv.org/abs/2105.01051

Speech processing Universal PERformance

SUPERB: Speech processing Universal PERformance Benchmark

 Shu-wen Yang¹, Po-Han Chi^{1*}, Yung-Sung Chuang^{1*}, Cheng-I Jeff Lai^{2*}, Kushal Lakhotia^{3*}, Yist Y. Lin^{1*}, Andy T. Liu^{1*}, Jiatong Shi^{4*}, Xuankai Chang⁶, Guan-Ting Lin¹,
Tzu-Hsien Huang¹, Wei-Cheng Tseng¹, Ko-tik Lee¹, Da-Rong Liu¹, Zili Huang⁴, Shuyan Dong^{5†}, Shang-Wen Li^{5†}, Shinji Watanabe⁶, Abdelrahman Mohamed³, Hung-yi Lee¹

Presented at INTERSPEECH 2021

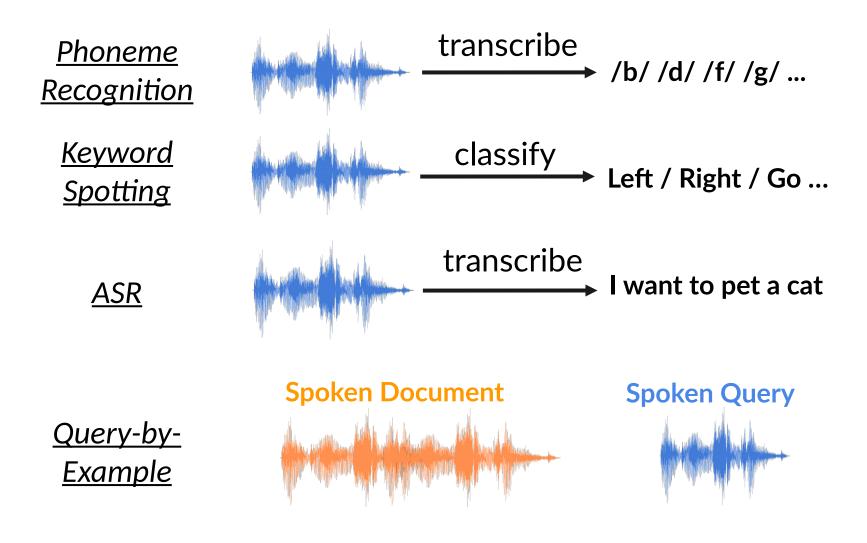
Introduction of Contestants

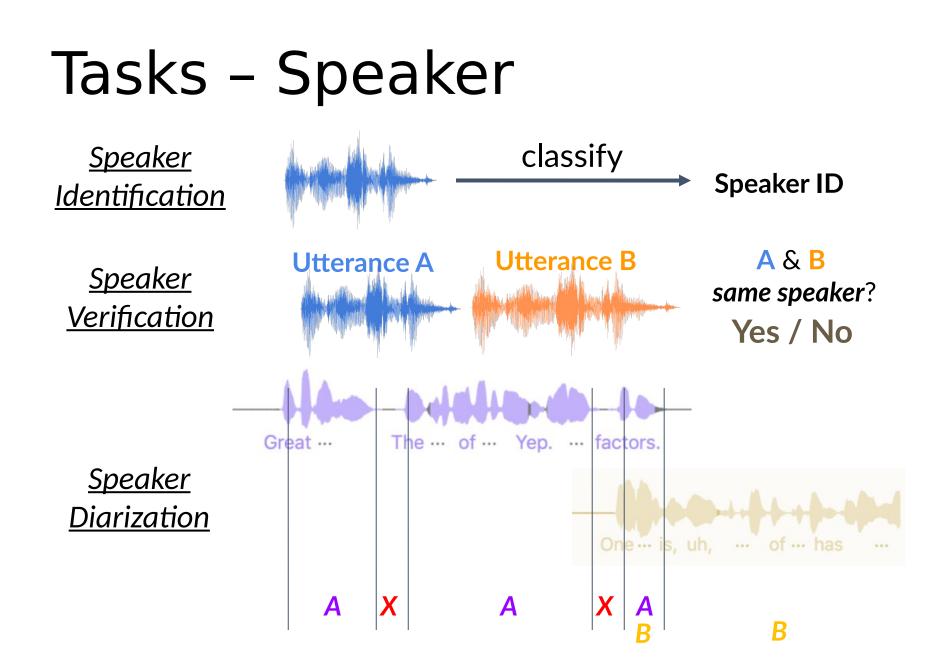
Method	Network	#Params	Stride	Input	Corpus	Pretraining	Official Github
FBANK	-	0	10ms	waveform	-	-	-
PASE+	SincNet, 7-Conv, 1-QRNN	7.83M	10ms	waveform	LS 50 hr	multi-task	santi-pdp / pase
APC	3-GRU	4.11M	10ms	FBANK	LS 360 hr	F-G	iamyuanchung / APC
VQ-APC	3-GRU	4.63M	10ms	FBANK	LS 360 hr	F-G + VQ	iamyuanchung / VQ-APC
NPC	4-Conv, 4-Masked Conv	19.38M	10ms	FBANK	LS 360 hr	M-G + VQ	Alexander-H-Liu / NPC
Mockingjay	12-Trans	85.12M	10ms	FBANK	LS 360 hr	time M-G	s3prl / s3prl
TERA	3-Trans	21.33M	10ms	FBANK	LS 960 hr	time/freq M-G	s3prl / s3prl
DeCoAR 2.0	12-Trans	89.84M	10ms	FBANK	LS 960 hr	time M-G + VQ	awslabs / speech-representations
modified CPC	5-Conv, 1-LSTM	1.84M	10ms	waveform	LL 60k hr	F-C	facebookresearch / CPC_audio
wav2vec	19-Conv	32.54M	10ms	waveform	LS 960 hr	F-C	pytorch / fairseq
vq-wav2vec	20-Conv	34.15M	10ms	waveform	LS 960 hr	F-C + VQ	pytorch / fairseq
wav2vec 2.0 Base	7-Conv 12-Trans	95.04M	20ms	waveform	LS 960 hr	M-C + VQ	pytorch / fairseq
wav2vec 2.0 Large	7-Conv 24-Trans	317.38M	20ms	waveform	LL 60k hr	M-C + VQ	pytorch / fairseq
HuBERT Base	7-Conv 12-Trans	94.68M	20ms	waveform	LS 960 hr		pytorch / fairseq
HuBERT Large	7-Conv 24-Trans	316.61M	20ms	waveform	LL 60k hr	M-P + VQ	pytorch / fairseq

- G: reconstructing the input
- P: token prediction
- C: contrastive learning

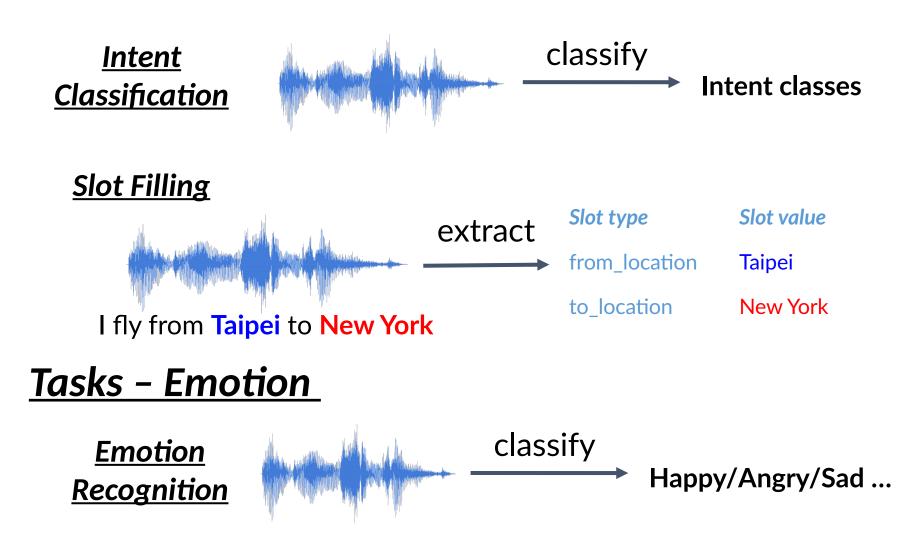
- VQ: quantization
- F: predicting future information
- M: input masking

Tasks – Content



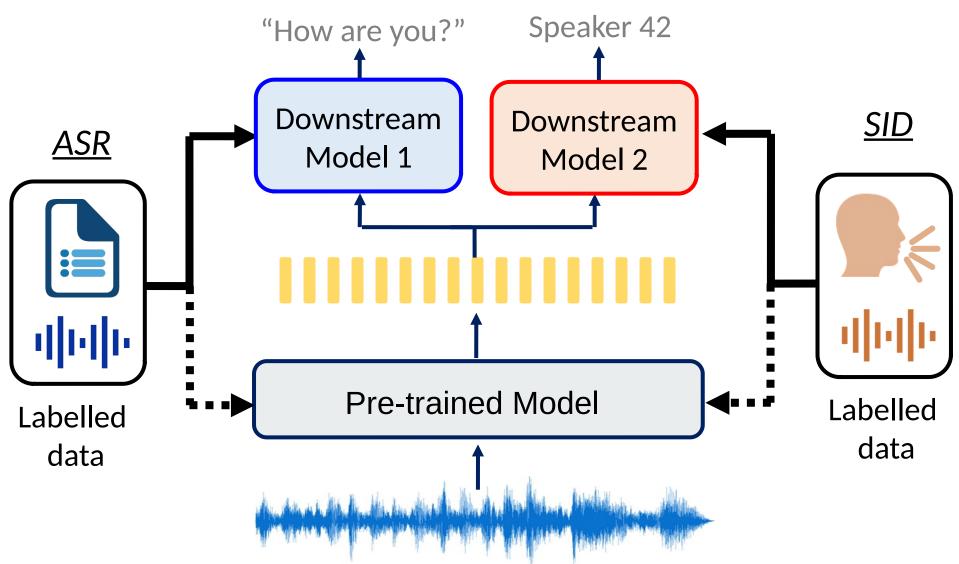


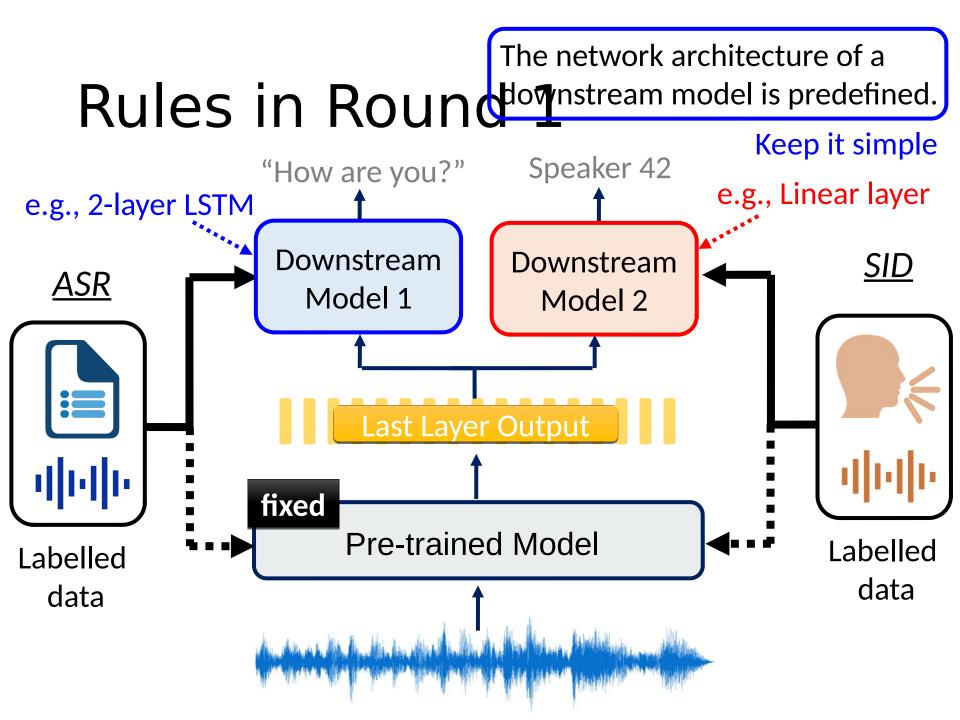
<u> Tasks – Semantic</u>



Please refer to the paper for more details.

I only put two out of ten Rules in Round L

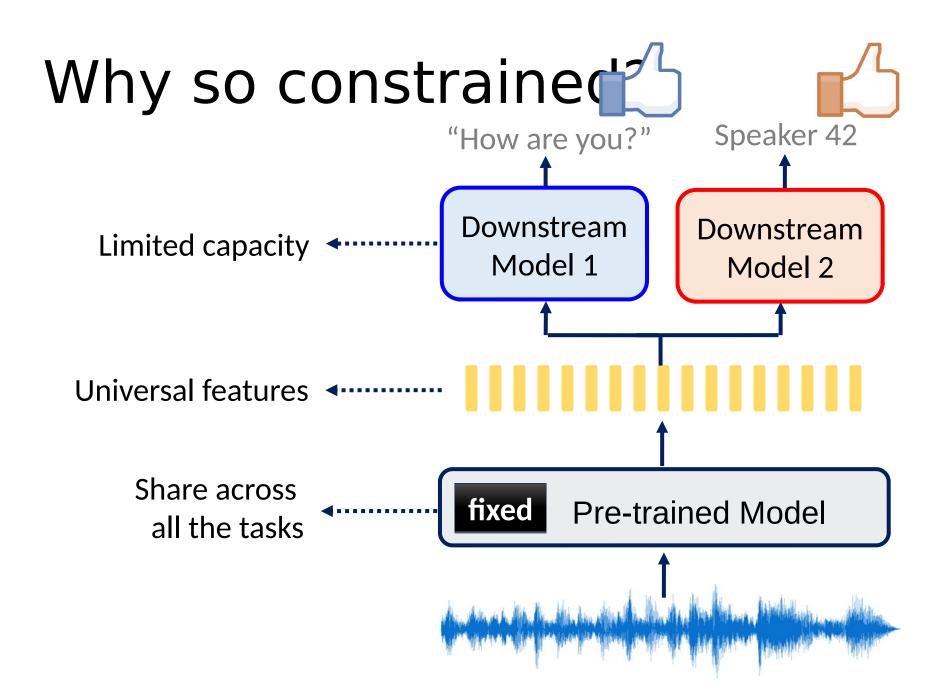


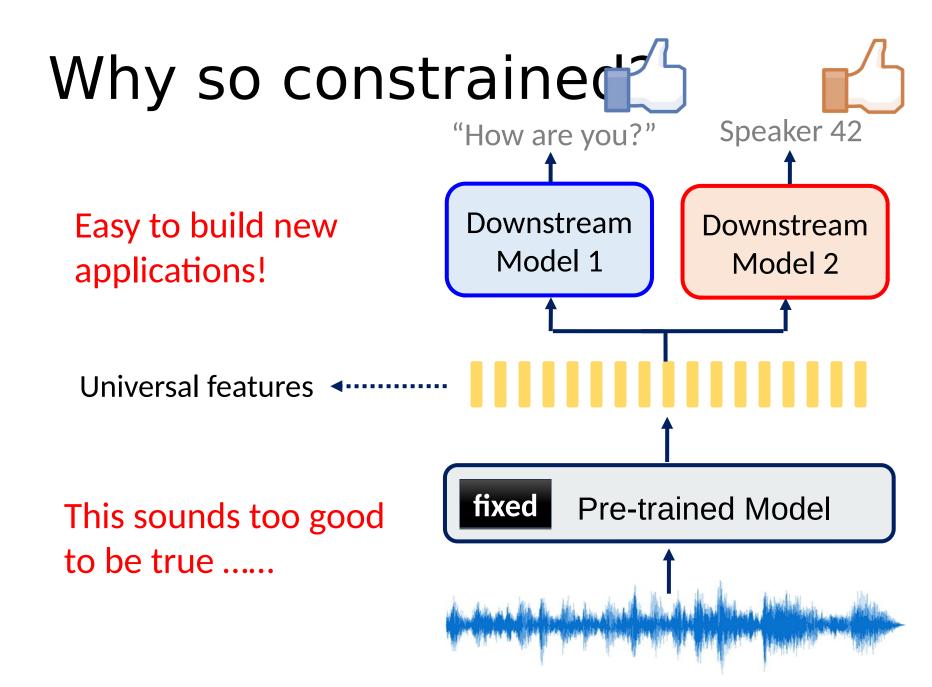


Rules in Round 1 – Downstream

- Phoneme Recognition: linear layer
- Keyword Spotting: linear layer
- Speech Recognition: 2-layer LSTM
- Query-by-example: none
- Speaker Identification: linear layer
- Speaker Verification: the same as x-vector
- Speaker Diarization: 1-layer LSTM
- Intent Classification: linear layer
- Slot Filling: 2-layer LSTM

Keep it simple





Emotion

		Con	tent		Speaker			Semantic		
	PR	KS	ASR	QbE	SID	ASV	SD	IC	SF	ĒR
fbank	82.01	8.63	15.21	0.0058	8.50E-04	9.56	10.05	9.1	69.64	35.39
	58.88	82.37	16.61	7.00E-04	35.84	10.91	8.52	30.29	60.41	57.64
APC	41.85	91.04	15.09	0.0268	59.79	8.81	10.72	74.64	71.26	58.84
VQ-APC	42.86	90.52	15.37	0.0205	49.57	9.29	10.49	70.52	69.62	58.31
NPC	52.67	88.54	14.69	0.022	50.77	10.28	9.59	64.04	67.43	59.55
Mockingjay	80.01	82.67	15.94	3.10E-10	34.5	23.22	11.24	28.87	60.83	45.72
TERA	47.53	88.09	12.44	8.70E-05	58.67	16.49	9.54	48.8	63.28	54.76
modified CPC	41.66	92.02	13.57	0.0061	42.29	9.67	11.00	65.01	74.18	59.28
wav2vec	32.39	94.09	11.3	0.0307	44.88	9.83	10.79	78.91	77.52	58.17
vq-wav2vec	53.49	92.28	12.69	0.0302	39.04	9.50	9.93	59.4	70.57	55.89
wav2vec 2.0 base	28.37	92.31	6.32	8.80E-04	45.62	9.69	7.48	58.34	79.94	56.93
HuBERT base	6.85	95.98	4.93	0.0759	64.84	7.22	6.76	95.94	86.24	62.94

Pre-trained Models

Emotion

		Con	tent		Speaker			Semantic		
	PR	KS	ASR	QbE	SID	ASV	SD	IC	SF	ER
fbank	82.01	8.63	15.21	0.0058	8.50E-04	9.56	10.05	9.1	69.64	35.39
PASE+	58.88	82.37			35.84		8.52	30.29		57.64
APC	41.85	91.04	15.09	0.0268	59.79	8.81		74.64	71.26	58.84
VQ-APC	42.86	90.52		0.0205	49.57	9.29		70.52		58.31
NPC	52.67	88.54	14.69	0.022	50.77		9.59	64.04		59.55
Mockingjay	80.01	82.67			34.5			28.87		45.72
TERA	47.53	88.09	12.44		58.67		9.54	48.8		54.76
modified CPC	41.66	92.02	13.57	0.0061	42.29			65.01	74.18	59.28
wav2vec	32.39	94.09	11.3	0.0307	44.88			78.91	77.52	58.17
vq-wav2vec	53.49	92.28	12.69	0.0302	39.04	9.50	93	59.4	70.57	55.89
wav2vec 2.0 base	28.37	92.31	6.32		45.62		7.48	58.34	79.94	56.93
HuBERT base	6.85	95.98	4.93	0.0759	64.84	7.22	6.76	95.94	86.24	62.94

worse than fbank

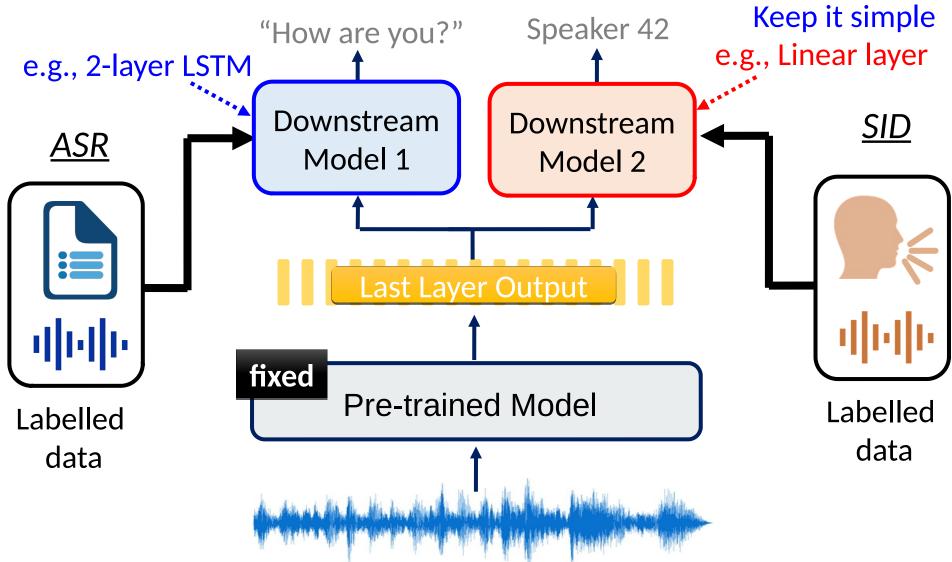
- Pre-trained models outperform fbank across many tasks.
- But they are not good at automatic speaker verification (ASV)?

Emotion

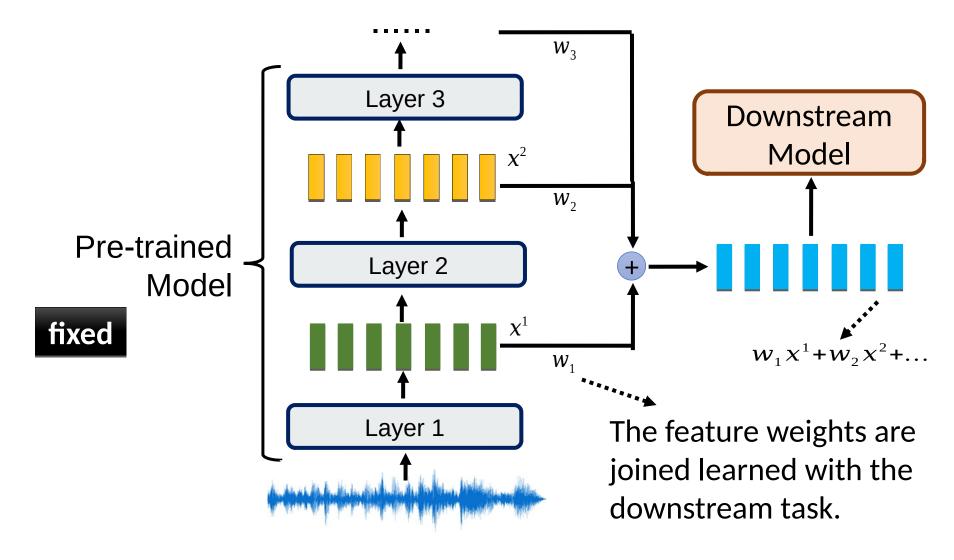
		Con	tent		S	Speake	er	Semantic		
	PR	KS	ASR	QbE	SID	ASV	SD	IC	SF	ER
fbank	82.01	8.63	15.21	0.0058	8.50E-04	9.56	10.05	9.1	69.64	35.39
PASE+	58.88	82.37			35.84		8.52	30.29		57.64
APC	41.85	91.04	15.09	0.0268	59.79	8.81		74.64	71.26	58.84
VQ-APC	42.86	90.52		0.0205	49.57	9.29		70.52		58.31
NPC	52.67	88.54	14.69	0.022	50.77		9.59	64.04		59.55
Mockingjay	80.01	82.67			34.5			28.87		45.72
TERA	47.53	88.09	12.44		58.67		9.54	48.8		54.76
modified CPC	41.66	92.02	13.57	0.0061	42.29			65.01	74.18	59.28
wav2vec	32.39	94.09	11.3	0.0307	44.88			78.91	77.52	58.17
vq-wav2vec	53.49	92.28	12.69	0.0302	39.04	9.50	9.93	59.4	70.57	55.89
wav2vec 2.0 base	28.37	92.31	6.32		45.62		7.48	58.34	79.94	56.93
HuBERT base	6.85	95.98	4.93	0.0759	64.84	7.22	6.76	95.94	86.24	62.94

- We do not show the results of wav2vec 2.0 **large** and HuBERT **large** here because they do not perform well in round 1.
- In round 1, we have not released the power of pre-trained models.

All the upstream models use the Rules in Round same downstream models.



Rules in Round 2



Emotion

		Con	tent		S	speake	er	Sem		
	PR	KS	ASR	QbE	SID	ASV	SD	IC	SF	ER
fbank	82.01	8.63	15.21	0.0058	8.50E-04	9.56	10.05	9.1	69.64	35.39
PASE+	58.87	82.54	16.62	0.0072	37.99	11.61	8.68	29.82	62.14	57.86
APC	41.98	91.01	14.74	0.0310	60.42	8.56	10.53	74.69	70.46	59.33
VQ-APC	41.08	91.11	15.21	0.0251	60.15	8.72	10.45	74.48	68.53	59.66
NPC	43.81	88.96	13.91	0.0246	55.92	9.40	9.34	69.44	72.79	59.08
Mockingjay	70.19	83.67	15.48	6.60E-04	32.29	11.66	10.54	34.33	61.59	50.28
TERA	49.17	89.48	12.16	0.0013	57.57	15.89	9.96	58.42	67.50	56.27
DeCoAR 2.0	14.93	94.48	9.07	0.0406	74.42	7.16	6.59	90.80	83.28	62.47
modified CPC	42.54	91.88	13.53	0.0326	39.63	12.86	10.38	64.09	71.19	60.96
wav2vec	31.58	95.59	11.00	0.0485	56.56	7.99	9.90	84.92	76.37	59.79
vq-wav2vec	33.48	93.38	12.80	0.0410	38.80	10.38	9.93	85.68	77.68	58.24
wav2vec 2.0 base	5.74	96.23	4.79	0.0233	75.18	6.02	6.08	92.35	88.30	63.43
wav2vec 2.0 large	4.75	96.66	3.10	0.0489	86.14	5.65	5.62	95.28	87.11	65.64
HuBERT base	5.41	96.30	4.79	0.0736	81.42	5.11	5.88	98.34	88.53	64.92
HuBERT large	3.53	95.29	2.94	0.0353	90.33	5.98	5.75	98.76	89.81	67.62

Emotion

		Con	tent		S	Speake	er	Semantic		
	PR	KS	ASR	QbE	SID	ASV	SD	IC	SF	ER
fbank	82.01	8.63	15.21	0.0058	8.50E-04	9.56	10.05	9.1	69.64	35.39
PASE+	58.87	82.54		0.0072	37.99		8.68	29.82		57.86
APC	41.98	91.01	14.74	0.0310	60.42	8.56		74.69	70.46	59.33
VQ-APC	41.08	91.11		0.0251	60.15	8.72		74.48		59.66
NPC	43.81	88.96	13.91	0.0246	55.92	9.40	9.34	69.44	72.79	59.08
Mockingjay	70.19	83.67			32.29			34.33		50.28
TERA	49.17	89.48	12.16		57.57		9.96	58.42		56.27
DeCoAR 2.0	14.93	94.48	9.07	0.0406	74.42	7.16	6.59	90.80	83.28	62.47
modified CPC	42.54	91.88	13.53	0.0326	39.63			64.09	71.19	60.96
wav2vec	31.58	95.59	11.00	0.0485	56.56	7.99	9.90	84.92	76.37	59.79
vq-wav2vec	33.48	93.38	12.80	0.0410	38.80		9.93	85.68	77.68	58.24
wav2vec 2.0 base	5.74	96.23	4.79	0.0233	75.18	6.02	6.08	92.35	88.30	63.43
wav2vec 2.0 large	4.75	96.66	3.10	0.0489	86.14	5.65	5.62	95.28	87.11	65.64
HuBERT base	5.41	96.30	4.79	0.0736	81.42	5.11	5.88	98.34	88.53	64.92
HuBERT large	3.53	95.29	2.94	0.0353	90.33	5.98	5.75	98.76	89.81	67.62

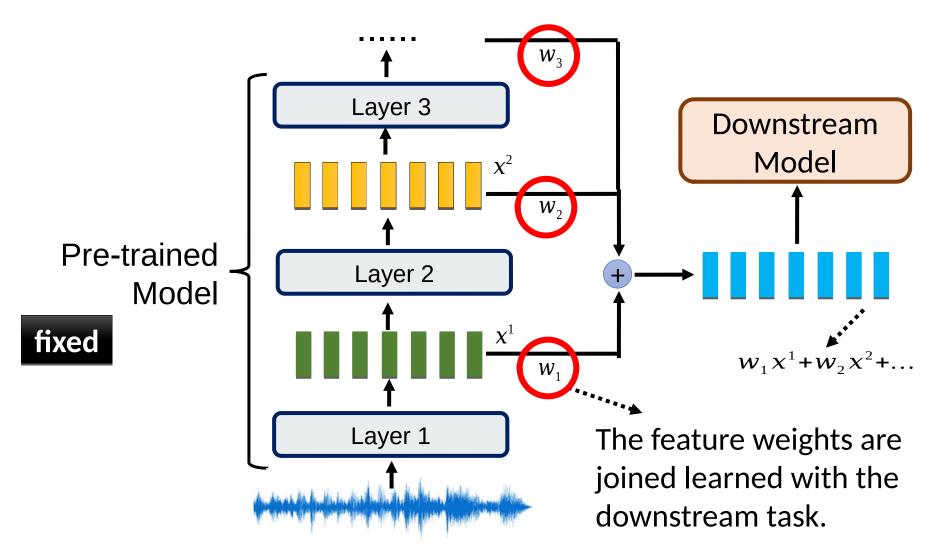
• Pre-trained learning outperforms fbank in most cases.

Emotion

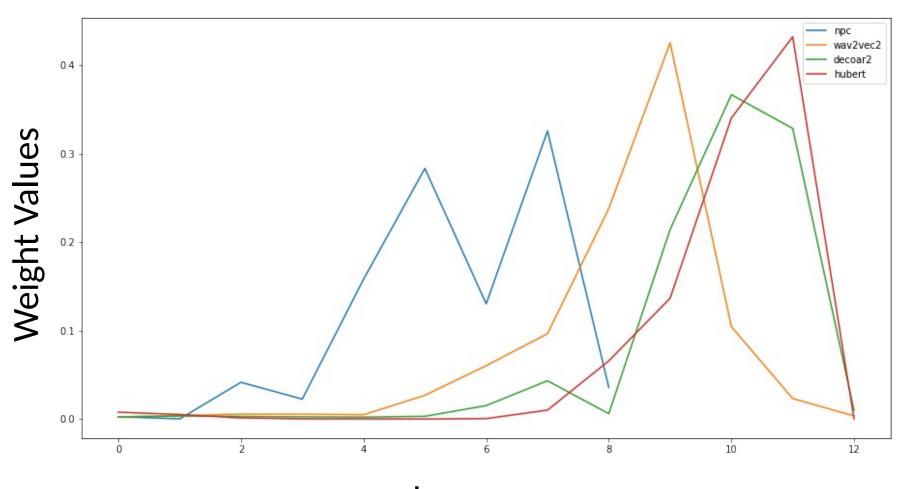
		Con	tent		Speaker			Semantic		
	PR	KS	ASR	QbE	SID	ASV	SD	IC	SF	ER
fbank	82.01	8.63	15.21	0.0058	8.50E-04	9.56	10.05	9.1	69.64	35.39
PASE+	58.87	82.54		0.0072	37.99		8.68	29.82		57.86
APC	41.98	91.01	14.74	0.0310	60.42	8.56		74.69	70.46	59.33
VQ-APC	41.08	91.11		0.0251	60.15	8.72		74.48		59.66
NPC	43.81	88.96	13.91	0.0246	55.92	9.40	9.34	69.44	72.79	59.08
Mockingjay	70.19	83.67			32.29			34.33		50.28
TERA	49.17	89.48	12.16		57.57		9.96	58.42		56.27
DeCoAR 2.0	14.93	94.48	9.07	0.0406	74.42	7.16	6.59	90.80	83.28	62.47
modified CPC	42.54	91.88	13.53	0.0326	39.63			64.09	71.19	60.96
wav2vec	31.58	95.59	11.00	0.0485	56.56	7.99	9.90	84.92	76.37	59.79
vq-wav2vec	33.48	93.38	12.80	0.0410	38.80		9.93	85.68	77.68	58.24
wavzvec 2.0 base	5./4	96.23	4./9	0.0233	/5.18	6.02	6.08	92.35	88.30	63.43
wav2vec 2.0 large	4.75	96.66	3.10	0.0489	86.14	5.65	5.62	95.28	87.11	65.64
HuBERT base	5.41	96.30	4.79	0.0736	81.42	5.11	5.88	98.34	88.53	64.92
HuBERT large	3.53	95.29	2.94	0.0353	90.33	5.98	5.75	98.76	89.81	67.62

• Several pre-trained models are all-around.

Analysis of the Weights

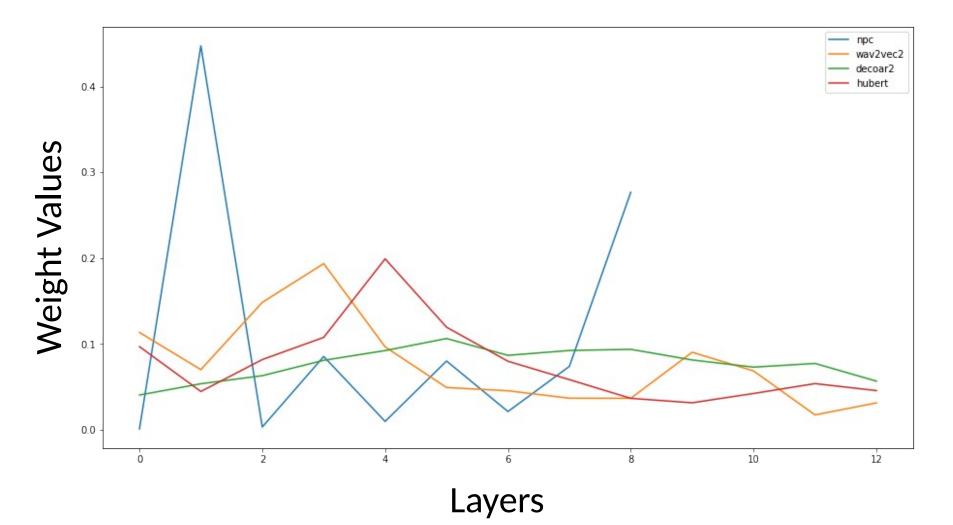


(The weights are normalized by Layer Weights the representation's norms.) – Phoneme Recognition



Layers

Layer Weights – Speaker Verification



Just name a few ...

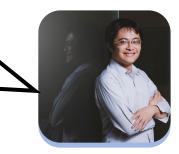
They have shown to achieve good performance on ASR.

Are they specialist for ASR? Or are they universal?

They are universal!

NPC.

.... but how can task-agnostic selfsupervised learning achieve that? (I don't have the answer now.)



My two cents (Now)

https://superbbenchmark.org/

Method	Name	Description	URL	Rank ↑	Score ↑	Rank-P ↑	Score-P ↑
WavLM Large	Microsoft	M-P + VQ	Θ	18.8	1122	6.1	3.54
WavLM Base+	Microsoft	M-P + VQ	Ð	17.7	1106	12.7	11.68
WavLM Base	Microsoft	M-P + VQ	Θ	16	1019	11.45	10.76
HuBERT Large	paper	M-P + VQ	-	15.1	919	4.1	2.9
wav2vec 2.0 Large	paper	M-C + VQ	-	14.8	914	3.9	2.88
HuBERT Base	paper	M-P + VQ	-	14.45	941	10.25	9.94
FaST-VGS+	Puyuan P	FaST-VG	-	12.9	809	5.9	3.72
wav2vec 2.0 Base	paper	M-C + VQ	-	11.85	818	8.7	8.61
DistilHuBERT	Heng-Jui	multi-task	-	11.1	717	15.6	30.54
DeCoAR 2.0	paper	M-G + VQ	-	10.5	722	8.5	8.03
wav2vec	paper	F-C	-	8.9	529	12.55	16.25

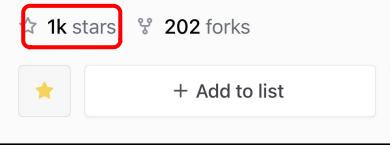
Toolkit – S3PRL

s3prl

s3prl

Self-Supervised Speech Pre-training and Representation Learning Toolkit.

youtu.be/PkMFnS6cjAc



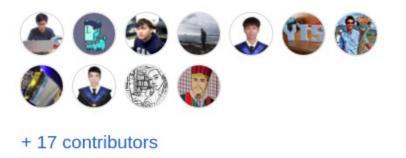
https://github.com/s3prl/s3prl

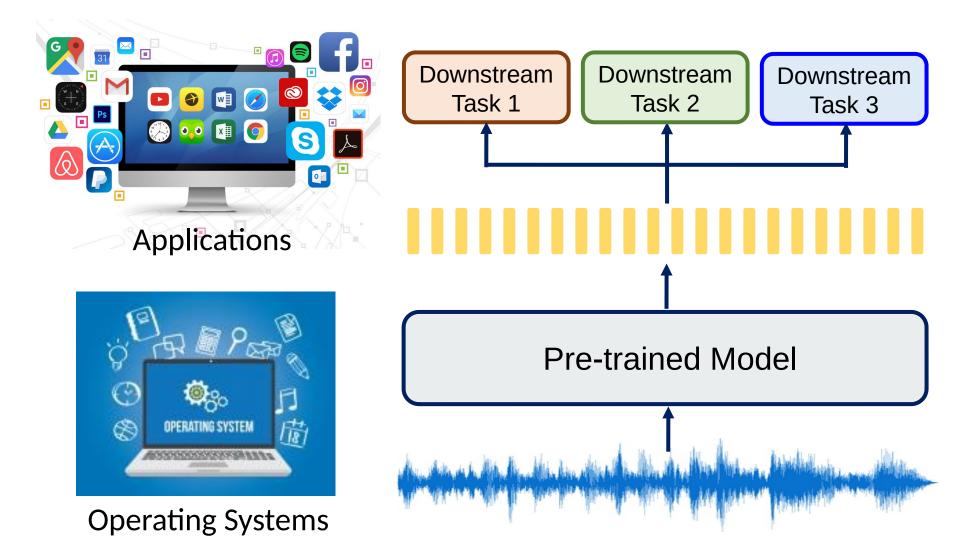
Used by 2

@tarun360 / LanguageIDORL

@microsoft / UniSpeech

Contributors 28





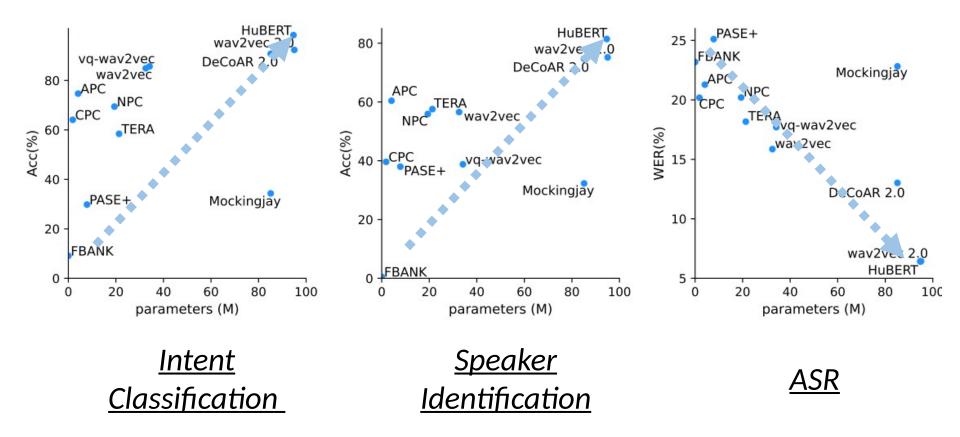
Let's welcome the era of Pretraining.

Research in Progress based on Self-supervised Learning

More

- 1. Make Pre-trained Model Smaller
- 2. Attacking Pre-trained Model
- 3. Privacy Issue of Pre-trained Model
- 4. Data Bias vs. Pre-training
- 5. Unsupervised Speech Recognition
- 6. Spoken Question Answering

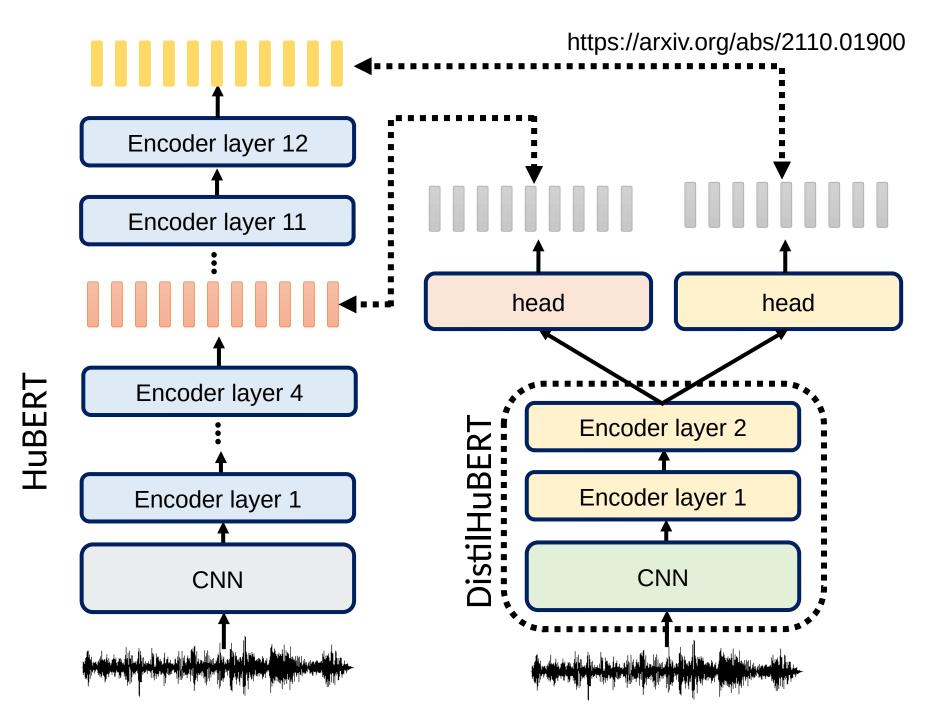
1. Make Pre-trained Model Smaller



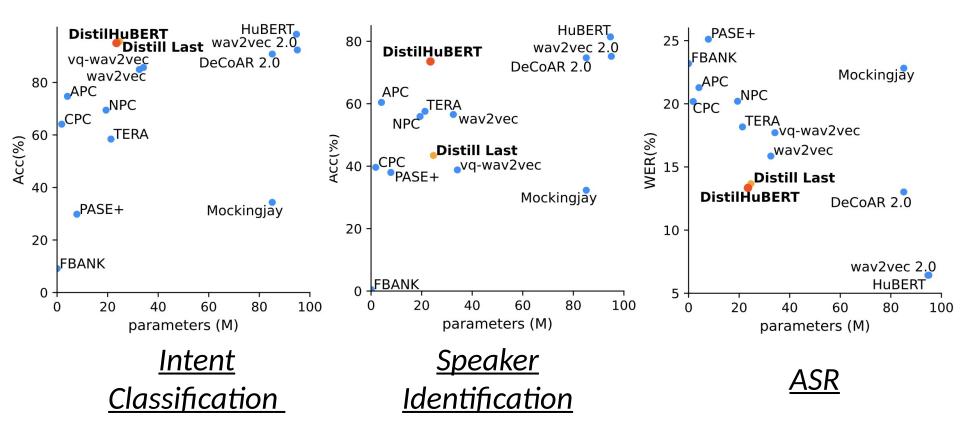
Larger models usually lead to better performance.

Typical Knowledge Distillation

Each layer contains different information. Learning from the last layer is not sufficient. As close as possible Encoder layer 12 Encoder layer 11 HuBERT Encoder layer 2 Encoder layer 1 Encoder layer 1 CNN CNN

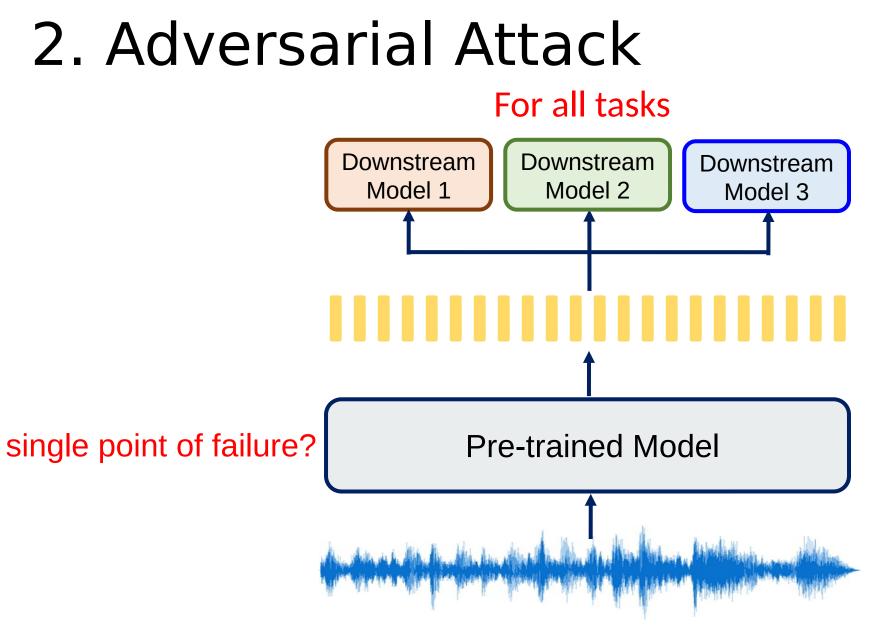


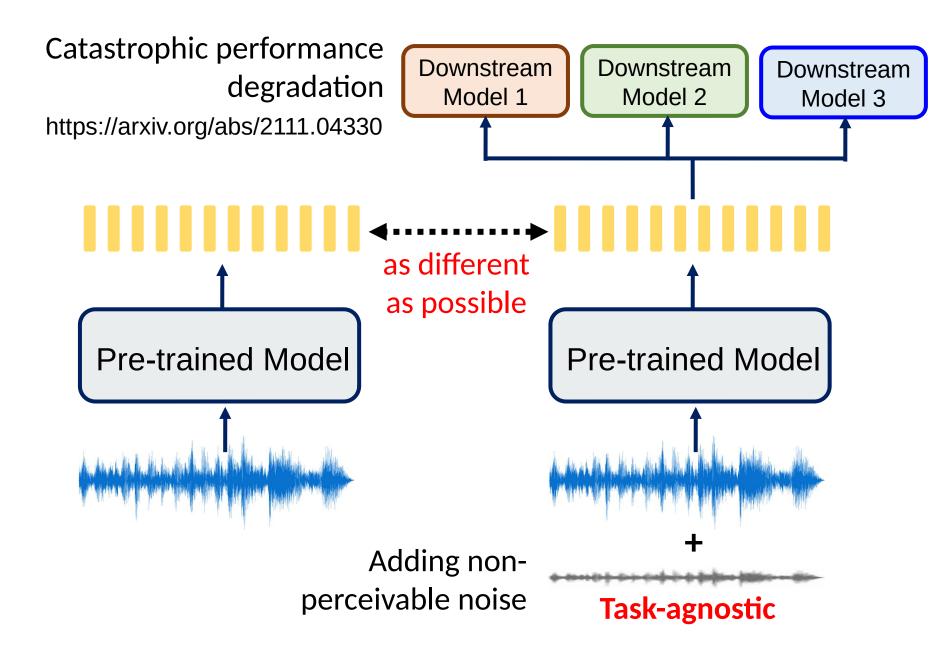
1. Make Upstream Model Smaller



DistilHuBERT is better than the models with the same size.

https://arxiv.org/abs/2111.04330





2. Adversarial Attack

The directions of the arrows denote the directions towards the better performance of the task.

		ASR	PR	KS	IC	SF		SID	ER	SD		ASV
		WER \downarrow	$\text{PER}\downarrow$	Acc↑	Acc↑	F1 ↑	$CER \downarrow$	Acc↑	Acc↑	Acc ↑	$DER \downarrow$	Acc↑
(a)	w2v2-w2v2	36.66	41.99	61	52	88.62	18.47	77	75	88.2	17.5	90
(b)	HuBERT-w2v2	8.73	6.74	94	83	95.54	9.31	89	93	95.06	7.3	98
(c)	gau-w2v2	0.54	0.96	97	95	99.13	1.61	95	97	98.2	2.6	100
(d)	Clean-w2v2	0	0	100	100	100	0	100	100	100	0	100
(e)	HuBERT-HuBERT	58.79	40.59	64	61	73.94	36.75	69	74	87.53	18.5	81
(f)	w2v2-HuBERT	2.50	3.04	97	98	98.63	2.22	89	91	95.02	7.1	97
(g)	gau-HuBERT	0	0.41	99	99	98.81	1.47	94	100	98.18	2.5	99
(h)	Clean-HuBERT	0	0	100	100	100	0	100	100	100	0	100

w2v2 and HuBERT are self-supervised models.

Without attack: Only select the samples with the correct predictions (e.g., 0% WER for ASR, 0% PER for PR, etc.)

2. Adversarial Attack

The directions of the arrows denote the directions towards the better performance of the task.

С.		ASR	PR	KS	IC	SF		SID	ER	SD		ASV
		WER↓	$\text{PER}\downarrow$	Acc↑	Acc ↑	F1 ↑	$CER \downarrow$	Acc↑	Acc↑	Acc ↑	DER↓	Acc↑
(a)	w2v2-w2v2	36.66	41.99	61	52	88.62	18.47	77	75	88.2	17.5	90
(b)	HuBERT-w2v2	8.73	6.74	94	83	95.54	9.31	89	93	95.06	7.3	98
(c)	gau-w2v2	0.54	0.96	97	95	99.13	1.61	95	97	98.2	2.6	100
(d)	Clean-w2v2	0	0	100	100	100	0	100	100	100	0	100
(e)	HuBERT-HuBERT	58.79	40.59	64	61	73.94	36.75	69	74	87.53	18.5	81
(f)	w2v2-HuBERT	2.50	3.04	97	98	98.63	2.22	89	91	95.02	7.1	97
(g)	gau-HuBERT	0	0.41	99	99	98.81	1.47	94	100	98.18	2.5	99
(h)	Clean-HuBERT	0	0	100	100	100	0	100	100	100	0	100

w2v2 and HuBERT are self-supervised models.

Without attack: Only select the samples with the correct predictions (e.g., 0% WER for ASR, 0% PER for PR, etc.) Adding Gaussian noises: Only a small impact on performance

2. Adversarial Attack

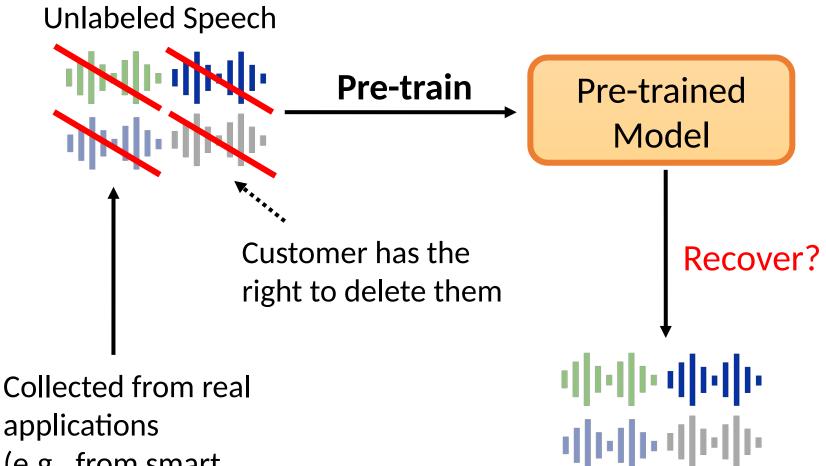
The directions of the arrows denote the directions towards the better performance of the task.

		ASR	PR	KS	IC	SF		SID	ER	SD		ASV
		WER↓	$PER \downarrow$	Acc↑	Acc ↑	F1 ↑	$CER \downarrow$	Acc↑	Acc↑	Acc ↑	DER↓	Acc↑
(a)	w2v2-w2v2	36.66	41.99	61	52	88.62	18.47	77	75	88.2	17.5	90
(b)	HuBERT-w2v2	8.73	6.74	94	83	95.54	9.31	89	93	95.06	7.3	98
(C)	gau-w2v2	0.54	0.96	97	95	99.13	1.61	95	97	98.2	2.6	100
(d)	Clean-w2v2	0	0	100	100	100	0	100	100	100	0	100
(e)	HuBERT-HuBERT	58.79	40.59	64	61	73.94	36.75	69	74	87.53	18.5	81
(f)	w2v2-HuBERT	2.50	3.04	97	98	98.63	2.22	89	91	95.02	7.1	97
(g)	gau-HuBERT	0	0.41	99	99	98.81	1.47	94	100	98.18	2.5	99
(h)	Clean-HuBERT	0	0	100	100	100	0	100	100	100	0	100

White-box attack: the attack is very effective.

Black-box attack: not as effective as while-box attack

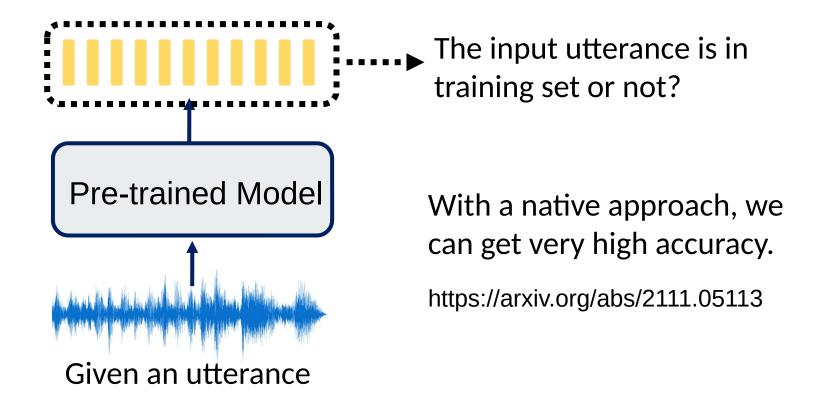
3. Privacy Issue



applications (e.g., from smart assistant)

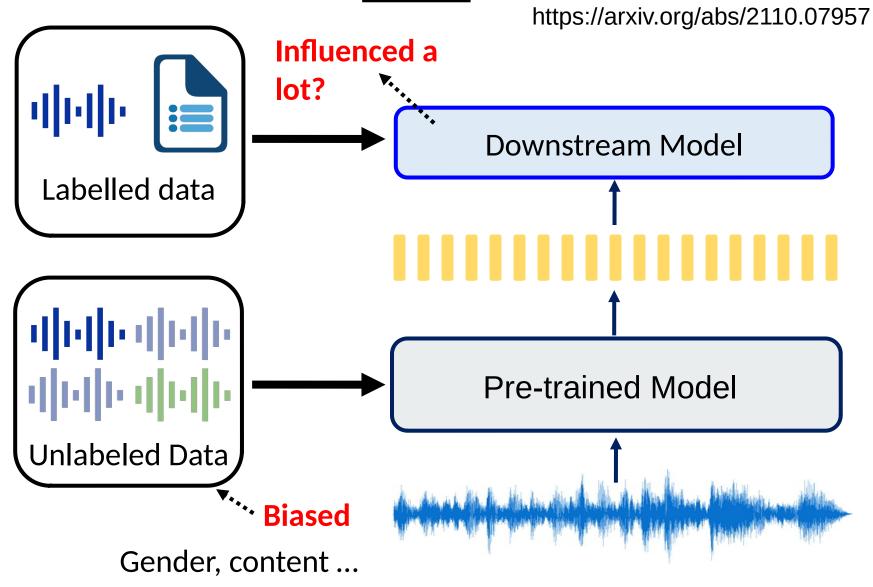
3. Privacy Issue

• Membership Inference Attack

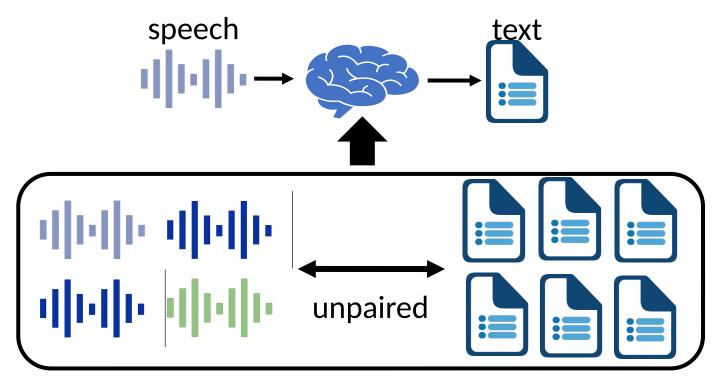


4. Would Biased Unlabeled Data become an

Don't speak too fast: The impact **fstate** as on self-supervised speech models



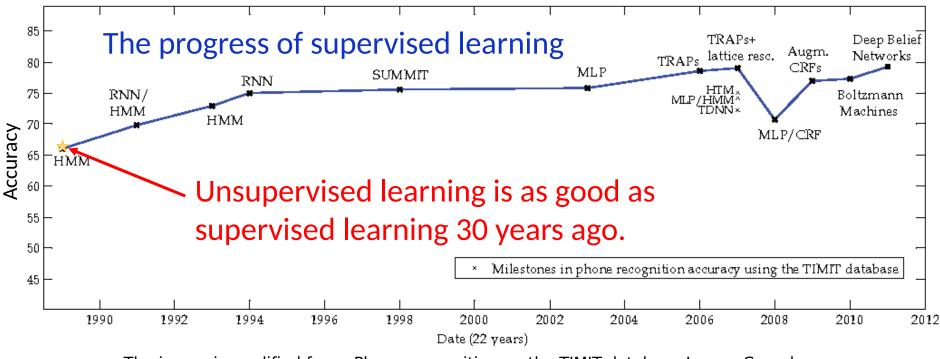
5. Unsupervised Speech Recognition



This can be achieved by Generative Adversarial Network (GAN).

How is the results?

- Unsupervised setting on TIMIT (text and audio are unpair, text is not the transcription of audio)
 - 63.6% PER (oracle boundaries) [Liu, et al., INTERSPEECH 2018]
 - 41.6% PER (automatic segmentation) [Yeh, et al., ICLR 2019]
 - 33.1% PER (automatic segmentation)[Chen, et al., INTERSPEECH 2019]



The image is modified from: Phone recognition on the TIMIT database Lopes, C. and Perdigão, F., 2011. Speech Technologies, Vol 1, pp. 285--302.

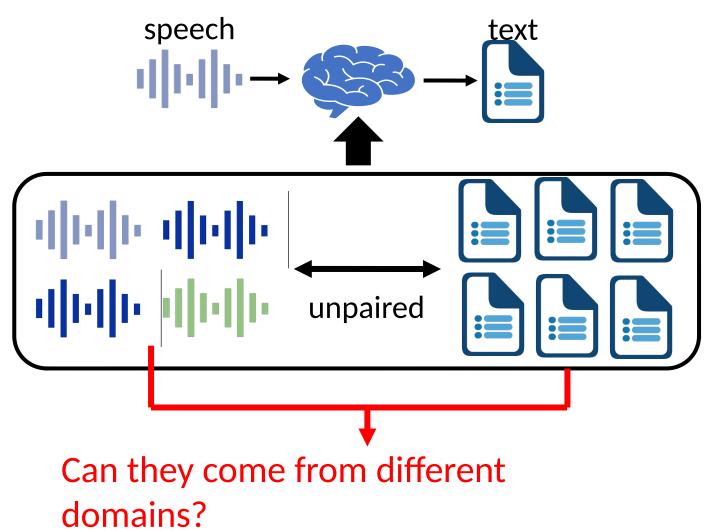
<u>Unsupervised ASR + Self-supervised Pre-training</u>

Amount of labeled data used

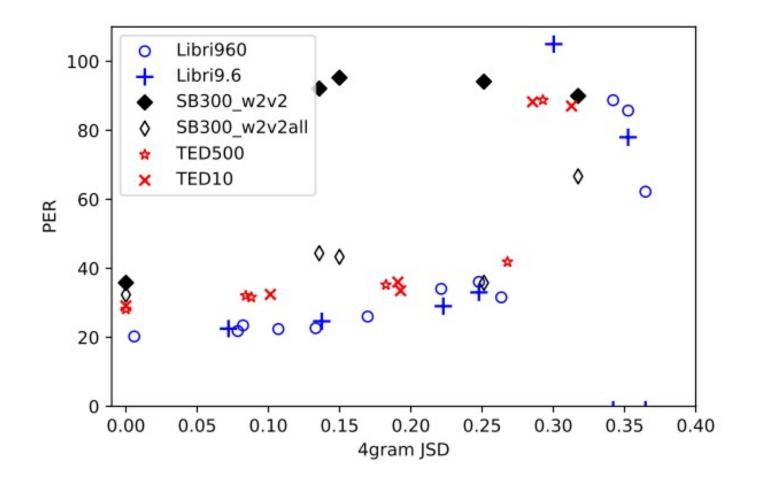


https://ai.facebook.com/blog/wav2vec-unsupervised-speech-recognitionwithout-supervision/

5. Unsupervised Speech Recognition



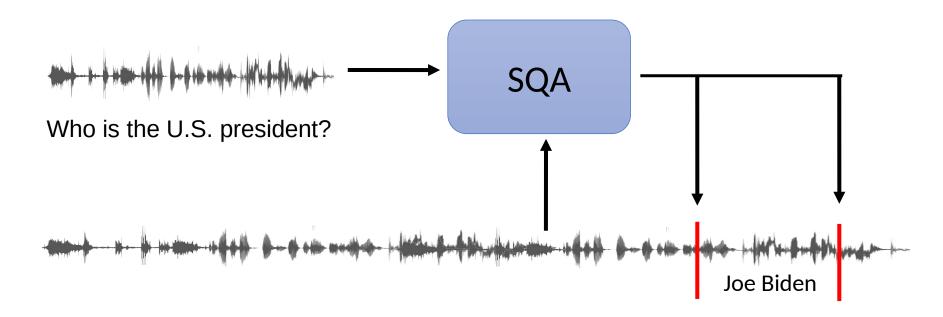
5. Unsupervised Speech Recognition https://arxiv.org/abs/2110.03509

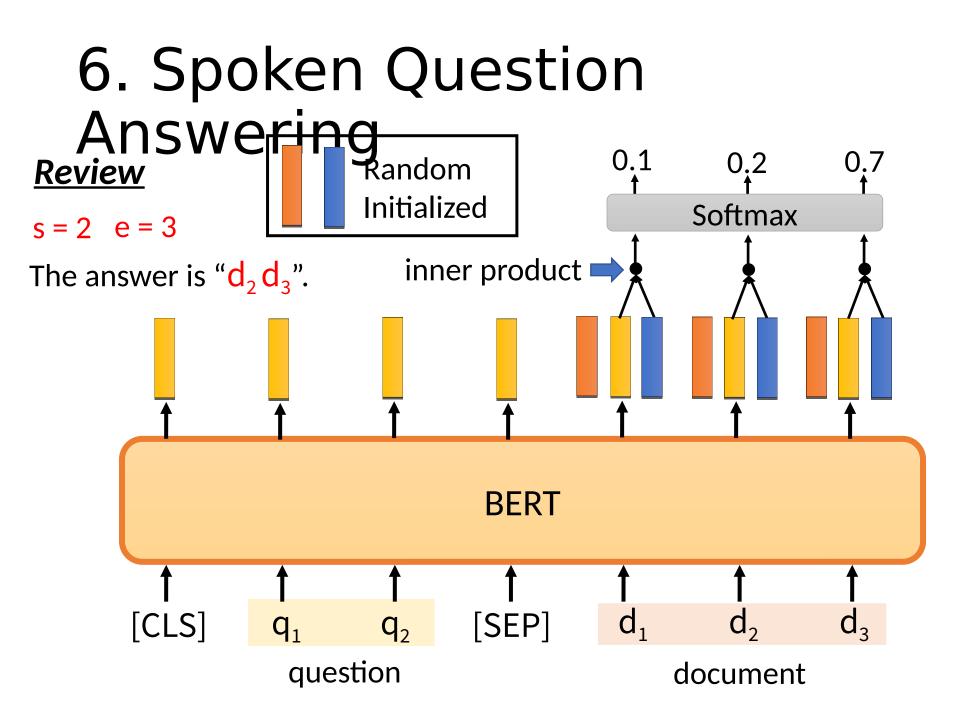


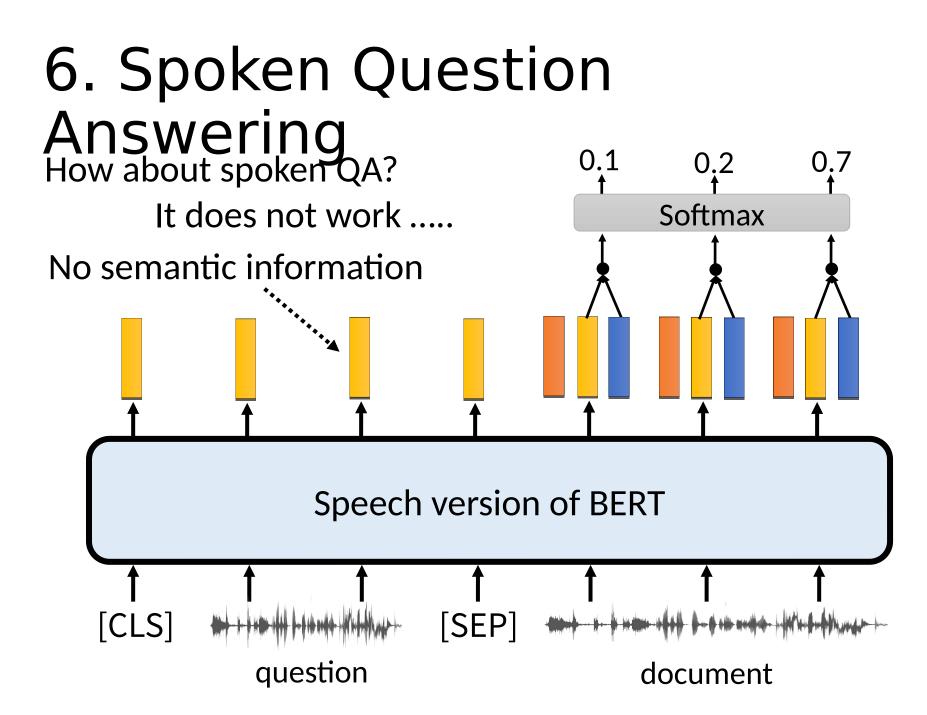
6. Spoken Question Answering

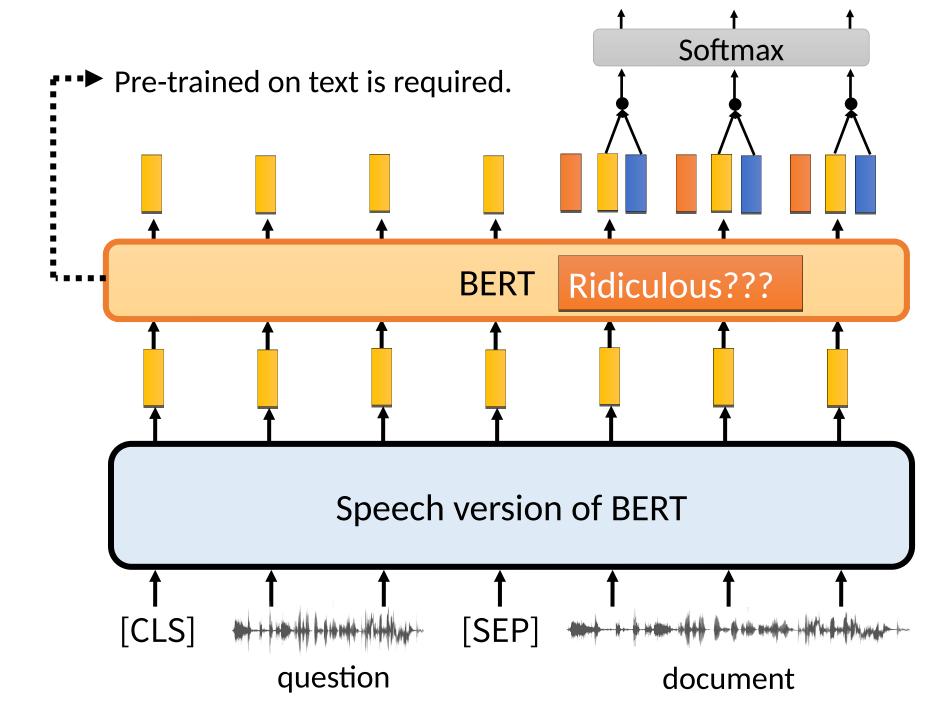
Spoken Question Answering (SQA)

Without speech recognition

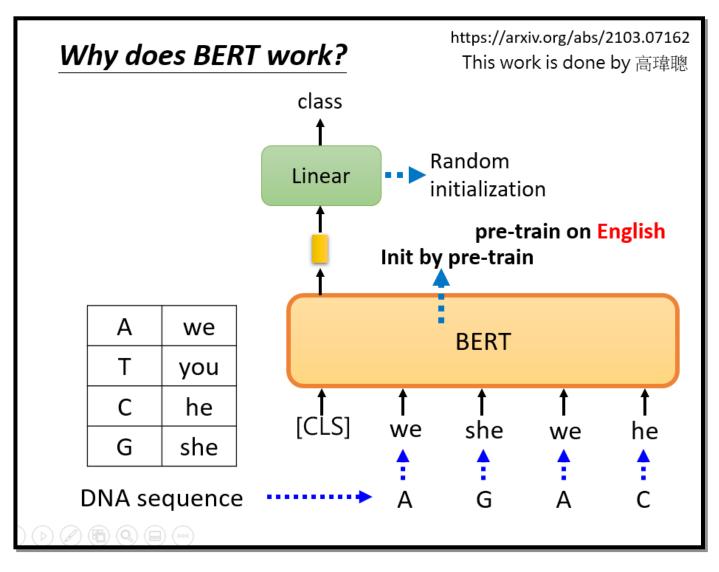








Recall these experiments



No pre-train: 6.12 F1 score Pre-training on text: 54.22 F1 score

More

- 1. Unsupervised Speech Recognition
- 2. Make Pre-trained Model Smaller
- 3. Attacking Pre-trained Model
- 4. Privacy Issue of Pre-trained Model
- 5. Data Bias vs. Pre-training
- 6. Spoken Question Answering