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Speech and Audio Signal Processing

Fundamental research and technologies for

human-to-human and human-to-machine
communication.

� Signal processing, estimation, and machine learning for

• voice communication systems

• hearing aids and cochlear implants

• recording, processing, and rendering of audio signals

• acoustic scene analysis and environmental surveillance

• acoustic source localization, separation, and tracking

• acoustic sensor networks and IoT.
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Acoustic Sensor Network (ASN)

� Many applications make use of acoustic sensors
• smart watches / smart phones / smart speakers
• surveillance and security devices
• typically, all of these are connected (WiFi, BT → IoT)

� ASNs open new opportunities for
acoustic signal processing and learning
• speech signal enhancement
• acoustic event detection
• acoustic source localization
• speech recognition

� Increasing demands for privacy (see e.g. EU GDPR)

� DFG collaborative research project FOR 2457
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Clustering and Enhancement in ASNs

Assignment of acoustic sensors
to source-dominated clusters
via fuzzy clustering.
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Privacy in Speech and Audio
� Speech signals convey information on several levels (linguistic,

paralinguistic).
� In speech and audio privacy, protection strategies are not well established

[Nautsch et al., 2019] - and are difficult to deal with!

� Difficult utility - privacy trade-off [Nelus et al., 2016]
• utility: maximize performance of desired task
• privacy: minimize revealed task-extraneous information

Utility

Privacy Utility

Privacy

⇒ How can we utilize acoustic sensors for novel applications without
compromising privacy?
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Recent Publications

� Follow privacy-by-design approach via information minimization
• privacy requirements and feature aggregation

[Nelus et al., 2016; Nelus et al., 2017]

� Explore DNN-based privacy-preserving feature extraction schemes

• variational information, siamese, adversarial
[Nelus & Martin, 2019; Nelus et al., 2019; Nelus & Martin, 2018]

� Improve trade-off between privacy and utility in ASN-based clustering
and classification tasks

• domestic activity monitoring, smart home
[Nelus, Ebbers, et al., 2019]

• clustering and local enhancement of signals.
[Gergen et al., 2018]

⇒ New insights into the functionality of DNN-based privacy-preserving
feature extraction in real-world scenarios.
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Feature Interception Attacks in ASNs
� Consider current technological trends:

• Internet of Things (IoT) → distributed processing
• prevalence of DNN-based solutions

� Highlight privacy risks at data pipeline level in ASN scenarios
• feature extractor converts low-level representation X into processed
feature vector Z

• interception of DNN-based feature representation Z

Feature
extractor

Classifier

Attacker

X Z

� Propose to tackle them using:
• information minimization - variational information feature extraction
• Euclidean-distance-based - siamese feature extraction
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Gender Recognition vs. Speaker
Identification
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Variational Information Training

X c

µ

σ

+

×

N (0, I)

Z g P(G)

Classifier

Feature extractor f

Trust
m
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a P(A)

Speaker identifier

T
hreat

m
odel

� Enhance trusted task (classifier) performance
� Expose a minimum amount of task-extraneous information

min
Φc,Φµ,Φσ,Φg

EGt∼p(Gt)[− log p(G)] + βI(X;Z)

� Find Imax(X;Z) ≥ I(X;Z)
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Computing the Upper Bound Imax(X;Z)

X c

µ

σ

+

×

N (0, I)

Z g P(G)

Classifier

Feature extractor f

Trust
m
odel

� Introduce variational approximation for p(z)→ q(z) = N (0, I)

� Use property of KL-divergence: D (p(z)||q(z)) ≥ 0

� Obtain analytical formulation for upper bound:
I(X;Z) ≤ D(p(z|x)||q(z)) = Imax(X;Z)
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Variational Information Training

X c
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� Loss function to minimize:

min
Φc,Φµ,Φσ,Φg

EGt∼p(Gt)[− log p(G)] + βImax(X;Z)

� Control privacy vs. utility trade-off using budget scaling factor β
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Speaker Identification Training
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Network Architecture

Gender recognizer

Trust model
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Results

� Gender recognizer:
• train on Wall Street
Journal (WSJ)

• test on WSJ and
TIMIT

� Attacker:
• train and test on WSJ
and TIMIT

• use 20 speaker groups

� Results aggregated over 10
cross-validations
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Domestic Activity Detection vs. Speaker
Identification
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Network Architecture

Introduction Privacy-preserving feature extraction Conclusions References A. Nelus, R. Martin 17 / 29



Results
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Gender Recognition vs. Speaker
Identification using Siamese Training
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Trust Model vs. Threat Model
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� Utility: accuracy gain of gender recognition
� Privacy: accuracy loss of speaker identification
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Stage I: Training the Feature Extractor

x1

x2

c1

c2

.
.
.

cΓ

z1

z2

ε

Feature extractor f

s1s1

� Group input vectors into
similar and dissimilar pairs{

(x1, x2) ∈ {(m,m), (f, f)}
(x1, x2) ∈ {(m, f), (f,m)}

� Map x1 → z1 & x2 → z2

� Compute ε = ‖z1 − z2‖2
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Stage II: Training the Gender Recognizer
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Training the Threat Model
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Network Architecture
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Results

� Gender recognizer:
• train and test on
TIMIT

� Attacker:
• train and test on
TIMIT

• use 20 speaker groups

� Results aggregated over 10
cross-validations 1 2 3 4 5
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Conclusions

� Proposed a privacy-aware feature extraction framework:
• variational information, siamese and adversarial

� Siamese approach offers better privacy vs. utility trade-off:
• direct action on feature-level euclidean distances
• higher level of feature specialization

� Preference for variational
information approach:
• versatile across ASN
applications

• robust against various
attackers

• upper bound guarantee on
the mutual information level
between high-level and raw
feature representation Adversarial Variational Siamese
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Thank you!
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