Speech Behavior Matters – Automatically Detect Device Directed Speech for the application of addressee-detection

Jun.-Prof. Ingo Siegert

Mobile Dialog Systems Group, Institute for Information Technology and Communications Otto von Guericke Universität Magdeburg

SPSC Webinar - 07.06.2021

Outline

- 1. Motivation
- 2. Utilized Datasets
- 3. Research Questions
- 4. Conclusion

Voice assistant systems recently receive increased attention

Voice assistant systems recently receive increased attention

- Microsoft Cortana had 133 million active users in 2016
- The echo Dot was the best-selling product on all of Amazon in the last three holiday seasons
- 72% of people owning a voice assistant often use them as part of their daily routine

Voice assistant systems recently receive increased attention

- Microsoft Cortana had 133 million active users in 2016
- The echo Dot was the best-selling product on all of Amazon in the last three holiday seasons
- 72% of people owning a voice assistant often use them as part of their daily routine

The ease of use is responsible for their attractiveness

By simply using speech commands users can:

- play music,
- search the web,
- create to-do and shopping lists,
- shop online,
- get instant weather reports, and
- control popular smart-home products.

Motivation – Conversation Initiation

Motivation - Conversation Initiation

Nowadays:

- Wake-up/Activation Word
- Push-to-talk Button

Motivation - Conversation Initiation

Nowadays:

- Wake-up/Activation Word
- Push-to-talk Button

Problems of the wake-up word as the preferred method

- January 2017: Alexa breakdown: Echo orders masses of doll's houses
- September 2017: Smart Home fraud: Neighbor is accepted to open the front door lock if a Siri Smart Lock
- February 2018: Amazon's Super Bowl Hack: Amazon has to "'mute" its own wake-word in 3-6kHz frequencies
- May 2018: Embarrassing data breach Alexa accidentally sends recorded conversation

Motivation - Conversation Initiation

Nowadays:

- Wake-up/Activation Word
- Push-to-talk Button

Problems of the wake-up word as the preferred method

- January 2017: Alexa breakdown: Echo orders masses of doll's houses
- September 2017: Smart Home fraud: Neighbor is accepted to open the front door lock if a Siri Smart Lock
- February 2018: Amazon's Super Bowl Hack: Amazon has to "'mute" its own wake-word in 3-6kHz frequencies
- May 2018: Embarrassing data breach Alexa accidentally sends recorded conversation

An important aspect of interactions with voice assistants:

Detecting when the device should be activated i.e. to distinguish human directed and device directed speech

Research Questions

Research Questions

- How (good) do humans recognize the addressee?
- O How do recent automatic recognition systems perform?
- 3 What happens when we leave the lab?

Utilized Datasets

Voice Assistant Conversation Corpus (VACC) [Siegert et al., 2018]

Voice Assistant Conversation Corpus (VACC) [Siegert et al., 2018]

Voice Assistant Conversation Corpus (VACC)

- Based on interaction with a commercial voice assistant (ALEXA)
- User's self-reports on experiences during the interaction

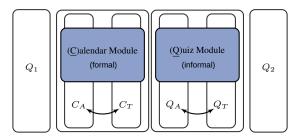


Figure: Sketch of the test procedure. Q_1 and Q_2 are the two rounds of the questionnaire. The order of the scenarios (calendar module and quiz module) is fixed. A and T denote the experimental conditions alone or together with a confederate.

Recording setup

- Living-room like environment
- Natural communication atmosphere
- Amazon ALEXA Echo Dot (2. Generation)
- No video recording
 - 2x Neckband microphones
 - 1x Gun shot microphone
 - WAV uncompressed (44.1 kHz)

VACC Dataset characteristics

Participants	27
Sex	male 13 / female 14
Age	Mean 24 (Std: 3.32) Min: 20; Max: 32
Total duration	17 h 07 min

Table: Example from SmartWeb Corpus

HD	DD
Ey I'd love to go to Cologne to	Where does it go here in the
meet other fans.	city center?
He found over a hundred pubs.	Which country was the first
That's totally confusing. So	Olympic champion in football?
where are we supposed to go to	

Table: Example from SmartWeb Corpus

HD	DD
Ey I'd love to go to Cologne to	Where does it go here in the
meet other fans.	city center?
He found over a hundred pubs.	Which country was the first
That's totally confusing. So	Olympic champion in football?
where are we supposed to go to	

Table: Example from VACC

HD	DD
yes best maybe you tell me when it's best for you	Alexa, do I have an appointment on Monday the 12.
I've always done it this way	when was Martin Luther King
and asked when he was born and when he died	born

Table: Example from SmartWeb Corpus

HD	DD
Ey I'd love to go to Cologne to	Where does it go here in the
meet other fans.	city center?
He found over a hundred pubs.	Which country was the first
That's totally confusing. So	Olympic champion in football?
where are we supposed to go to	

Table: Example from VACC

HD	DD
yes best maybe you tell me when it's best for you	Alexa, do I have an appointment on Monday the 12.
I've always done it this way and asked when he was born and when he died	when was Martin Luther King born

Mismatch of the dialog complexity could influence the recognition problem!

Whether the counterpart is a human or a technical system

Design

- Interactions with technical systems or humans via simulated telephone
- Explicit design of DD-/HD-dialogs with
 - Same type of conversation
 - Same vocabulary
 - Same content

Design

- Interactions with technical systems or humans via simulated telephone
- Explicit design of DD-/HD-dialogs with
 - Same type of conversation
 - Same vocabulary
 - Same content

Task

- Reservations in 3 restaurants
- Various constraints
- Interlocutor is either
 - a simple technical system
 - an advanced technical system
 - a human Interlocutor

Design

- Interactions with technical systems or humans via simulated telephone
- Explicit design of DD-/HD-dialogs with
 - Same type of conversation
 - Same vocabulary
 - Same content

Task

- Reservations in 3 restaurants
- Various constraints
- Interlocutor is either
 - a simple technical system
 - an advanced technical system
 - a human Interlocutor

Data set

- 30 participants (10 m/ 20f)
- 5 h 37 min
- 4835 utterances
 - TS1 797
 - TS2 637
 - H 789

Research Questions

Research Questions

- How (good) do humans recognize the addressee?
- O How do recent automatic recognition systems perform?
- 3 What happens when we leave the lab?

How (good) do humans recognize the addressee?

How (good) do humans recognize the addressee?

[Katzenmaier et al., 2004, Jovanovic et al., 2006, Beyan et al., 2016]

The majority of studies refer to visual (gaze) or lexical (wake-up word) cues.

Research methods

Research methods

Subjective analysis (VACC)

- Open and closed questions
 - Experiencing changes in speaking style
 - Verbalisation of differences
- Summarizing qualitative content analysis [Mayring, 2014]

Research methods

Subjective analysis (VACC)

- Open and closed questions
 - Experiencing changes in speaking style
 - Verbalisation of differences
- Summarizing qualitative content analysis [Mayring, 2014]

Objective Analysis (VACC, RBC)

- Human Annotation
 - GER and NON-GER
 - 10 annotators each
 - random pre-selection
 - without lexical cues
- Calculating recall measure

Results - Subjective analysis

Results - Subjective analysis

Interaction with human partner

- "frei und unbekümmert" (B), "intuitiv" (X)
- "gesprochen wie immer" (G), "keine großen Gedanken gemacht" (M), weil Kommunikation mit Menschen geläufig ist
- "persönlich[eres]", "freundlich[eres]" Sprechen (E)

Results - Subjective analysis

Interaction with human partner

- "frei und unbekümmert" (B), "intuitiv" (X)
- "gesprochen wie immer" (G), "keine großen Gedanken gemacht" (M), weil Kommunikation mit Menschen geläufig ist
- "persönlich[eres]", "freundlich[eres]" Sprechen (E)

Interaction with Alexa

- kaum "intuitiv" (AB) erlebt,
- "schwieriger zu kommunizieren" (P), "unfrei" (B), "kein Dialog" (J)
- "[Betonung und Lautstärke] eher anders als ich es mit jemanden in der realen Welt gemacht hätte" (M)

Results - Objective analysis

Results - Objective analysis

UAR	GER	NON-GER	
VACC	82.27%	71.68%	

Results - Objective analysis

UAR	GER	NON-GER
VACC	82.27%	71.68%
SVC	85.45%	72.43%

Results - Objective analysis

UAR	GER	NON-GER
VACC	82.27%	71.68%
SVC	85.45%	72.43%
RBC	60.54%	53.57%

How do recent automatic recognition systems perform?

How do recent automatic recognition systems perform?

[Baba et al., 2012]	[Shriberg et al., 2012]	[Tsai et al., 2015]	[Batliner et al., 2008]
2 Persons	2 Persons	2-3 Persons	2 Persons
Animated character	"Conversational Browser"	Computer	Computer
Decision-making	Formal interaction	Quiz	Information retrieval
6 features (F ₀ , intensity, speech rate)	Energy(-contour), speech rate	47 features (energy-contour)	duration, energy, F0, length of pauses
SVM	GMM	Adaboost	LDA
80.7% (Accuracy)	12,63% (EER)	13.88% (EER)	74.2% (UAR)

Baseline [Siegert et. al, 2018,2019] VACC/RBC

• linear SVM (emobase features)

Baseline [Siegert et. al, 2018,2019] VACC/RBC

• linear SVM (emobase features)

Metaclassifier [Akhtiamov et. al, 2019,2020] VACC/RBC

- linear SVM from ComParE (LDDS + func)
- radial SVM from ASR configuration
- LSTMs from LLDs
- LSTMs from raw-audio

Baseline [Siegert et. al, 2018,2019] VACC/RBC

• linear SVM (emobase features)

Metaclassifier [Akhtiamov et. al, 2019,2020] VACC/RBC

- linear SVM from ComParE (LDDS + func)
- radial SVM from ASR configuration
- LSTMs from LLDs
- LSTMs from raw-audio

RNNs with attention layer [Baumann & Siegert, 2020] RBC

- features: MFCCs and FFV + phone identities
- RNNs for each segment, attention layer over different segment sizes

Baseline [Siegert et. al, 2018,2019] VACC/RBC

• linear SVM (emobase features)

Metaclassifier [Akhtiamov et. al, 2019,2020] VACC/RBC

- linear SVM from ComParE (LDDS + func)
- radial SVM from ASR configuration
- LSTMs from LLDs
- LSTMs from raw-audio

RNNs with attention layer [Baumann & Siegert, 2020] RBC

- features: MFCCs and FFV + phone identities
- RNNs for each segment, attention layer over different segment sizes

Continuous Learning Framework [Siegert et. al (submitted CSR)] RBC

• speaker-dependend architecture, re-train on few samples

	VACC		RBC	
	UAR	abs. Δ	UAR	abs. Δ
Human Annotation (NON-GER)	71.68%	-	53.57%	-
Baseline (linear SVM)				
Metaclassifier				
RNNs + attention layer				
Continuous Learning Framework				

	VACC		RBC	
	UAR	abs. Δ	UAR	abs. Δ
Human Annotation (NON-GER)	71.68%	-	53.57%	-
Baseline (linear SVM)	85.38%	13.70%	52.02%	-1.55%
Metaclassifier				
RNNs + attention layer				
Continuous Learning Framework				

	VACC		RBC	
	UAR	abs. Δ	UAR	abs. Δ
Human Annotation (NON-GER)	71.68%	-	53.57%	-
Baseline (linear SVM)	85.38%	13.70%	52.02%	-1.55%
Metaclassifier	89.10%	17.42%	62.70%	9.13%
RNNs + attention layer				
Continuous Learning Framework				

	VACC		RBC	
	UAR	abs. Δ	UAR	abs. Δ
Human Annotation (NON-GER)	71.68%	-	53.57%	-
Baseline (linear SVM)	85.38%	13.70%	52.02%	-1.55%
Metaclassifier	89.10%	17.42%	62.70%	9.13%
RNNs + attention layer	-	-	65.50%	11.93%
Continuous Learning Framework				

	VACC		RBC	
	UAR	abs. Δ	UAR	abs. Δ
Human Annotation (NON-GER)	71.68%	-	53.57%	-
Baseline (linear SVM)	85.38%	13.70%	52.02%	-1.55%
Metaclassifier	89.10%	17.42%	62.70%	9.13%
RNNs + attention layer	-	-	65.50%	11.93%
Continuous Learning Framework	-	-	85.77%	32.20%

Summary

1 How (good) do humans recognize the addressee? $\checkmark/\$$

Summary

- 1 How (good) do humans recognize the addressee? $\checkmark/\$$
- 2 Automatic recognition performance? X, speaker-dependancy \checkmark

Summary

- 1 How (good) do humans recognize the addressee? \checkmark/\varkappa
- 2 Automatic recognition performance? X, speaker-dependancy \checkmark
- ${f 3}$ Prosodic information help to distinguish HD and DD utterances \checkmark

Summary

- ❶ How (good) do humans recognize the addressee? ✓/✗
- 2 Automatic recognition performance? X, speaker-dependancy \checkmark
- ${f 3}$ Prosodic information help to distinguish HD and DD utterances \checkmark

Limitations

- Number of participants
- No video recording
- Dialog complexity/Length of interaction
- Non parallel interaction of human and system
- Lab environment

What happens when we leave the lab?

What happens when we leave the lab?

Limitations of Lab environment

- Participants try to act as good participants
- Hard to get participants' real feelings
- Participants need a task

Need for unrestricted data in public environment

- people talk voluntary,
- people talk unrestricted,
- people talk without fear of being observed/recorded, and
- people themselves determine beginning and end of the conversation.

"Alexa in the wild" – Voice Assistant Conversations in the wild (VACW) Corpus _[Siegert, 2020]

"Alexa in the wild" – Voice Assistant Conversations in the wild (VACW) Corpus _[Siegert, 2020]

"MS Wissenschaft"

- May until October 2019
- 31 cities in Germany and Austria
- Stay of 3 to 5 days for each city
- Exhibition is aimed at school classes but also at interested adults
- More than 85 000 people with more than 500 classes visited exhibition

"Alexa in the wild" – Voice Assistant Conversations in the wild (VACW) Corpus _[Siegert, 2020]

"MS Wissenschaft"

- May until October 2019
- 31 cities in Germany and Austria
- Stay of 3 to 5 days for each city
- Exhibition is aimed at school classes but also at interested adults
- More than 85 000 people with more than 500 classes visited exhibition

Dataset overview

Dataset overview

Duration	39.9h
# Visitor utterances	32 758
# Sessions	7 1 4 4
Language	German
Annotation	transcriptions, topics

Table: Key characteristics of the VACW dataset.

First Analyses I

Slide 24

First Analyses I

Topics	Frequency
Quiz-Questions	41.3%
Other-Questions	10.1%
Alexa features	16.0%
Time/Date	7.4%
Music	5.6%
Playing around	3.2%
Weather	1.4%
Inappropriate	1.4%
Saluations	0.8%
Games	0.4%
Movie/TV	0.2%
Recommendations	0.1%
Other	12.1%

Table: Types of visitor interactions with Alexa during the exhibition, with examples and frequency.

Activation word	Occurrences
Alexa	8 732
Alexa (multiple times)	314
Hey Alexa	16
Hi Alexa	1
Hey Siri	3
Hey Google	3
Google	1

Table: Distributions of different "activation" words. As Alexa sometimes allow to utter follow-up requests, not all utterances need an activation word and therefore this number is smaller than the total number of utterances.

First Analyses II

Slide 25

First Analyses II

Other remarkable observations

- group interactions
- asking regarding surveillance
- asking for Alexa to be his/her friend and for marriage
- giving good bye messages to Alexa
- Swearwords and other non appropriate words
- 15% of user request could not been solved ("I did not understand")

More to come...

Conclusion & Outlook

Conclusion & Outlook

Conclusion

- Actual wake-word activation sometimes fails
- Humans use additional cues (gaze, prosody) to code the addressee
- Addressee-detection should use this information
- Even with challenging data a prosody-only AD possible
- If individual differences are taken into account

Conclusion & Outlook

Conclusion

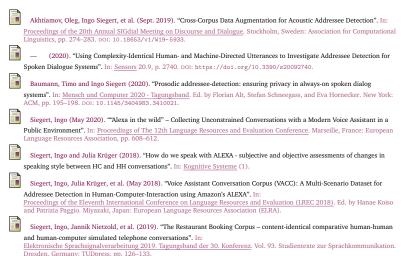
- Actual wake-word activation sometimes fails
- Humans use additional cues (gaze, prosody) to code the addressee
- Addressee-detection should use this information
- Even with challenging data a prosody-only AD possible
- If individual differences are taken into account

Outlook

- Analyse individual addressee behavior
- Analyse single factors of addressee behavior
 - Appearance
 - System's Voice
 - User type
 - ...
- Larger datasets needed
- Testing under real conditions (imperfect audio, compression, etc.)

Thank you for your attention

Literature



Slide 29